GNU Emacs Lisp Reference Manual

GNU Emacs Version 19
for Unix Users
Edition 2.0, May 1993

by Bil Lewis, Dan LaLiberte, Richard Stallman
and the GNU Manual Group

Copyright (©) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.

This is edition 2.0 of the GNU Emacs Lisp Reference Manual, for Emacs Version 19,
May 1993.
ISBN 1-882114-20-5.

Published by the Free Software Foundation,
675 Massachusetts Avenue,
Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms

of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be stated
in a translation approved by the Foundation.

Cover art by Etienne Suvasa.

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you

can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can

get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and

GNU Emacs Lisp Reference Manual

passed on, we want its recipients to know that what they have is not the original, so that any

problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the

danger that redistributors of a free program will individually obtain patent licenses, in effect making

the program proprietary. To prevent this, we have made it clear that any patent must be licensed

for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1.

2.

3.

This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in

the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends

on what the Program does.

You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option

offer warranty protection in exchange for a fee.

You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of

Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

GNU GENERAL PUBLIC LICENSE 3

b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

GNU Emacs Lisp Reference Manual

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply
in other circumstances.

GNU GENERAL PUBLIC LICENSE 5

10.

11.

12.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system:;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-

6 GNU Emacs Lisp Reference Manual

FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 7

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than ‘show
w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your program.

GNU Emacs Lisp Reference Manual

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking

proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

Chapter 1: Introduction 9

1 Introduction

Most of the GNU Emacs text editor is written in the programming language called Emacs Lisp.
You can write new code in Emacs Lisp and install it as an extension to the editor. However, Emacs
Lisp is more than a mere “extension language”; it is a full computer programming language in its
own right. You can use it as you would any other programming language.

Because Emacs Lisp is designed for use in an editor, it has special features for scanning and
parsing text as well as features for handling files, buffers, displays, subprocesses, and so on. Emacs
Lisp is closely integrated with the editing facilities; thus, editing commands are functions that can
also conveniently be called from Lisp programs, and parameters for customization are ordinary Lisp
variables.

This manual describes Emacs Lisp, presuming considerable familiarity with the use of Emacs for
editing. (See The GNU Emacs Manual, for this basic information.) Generally speaking, the earlier
chapters describe features of Emacs Lisp that have counterparts in many programming languages,
and later chapters describe features that are peculiar to Emacs Lisp or relate specifically to editing.

This is edition 2.0.

1.1 Caveats

This manual has gone through numerous drafts. It is nearly complete but not flawless. There
are a few sections which are not included, either because we consider them secondary (such as most
of the individual modes) or because they are yet to be written.

Because we are not able to deal with them completely, we have left out several parts intentionally.
This includes most references to VMS and all information relating Sunview. (The Free Software
Foundation expends no effort on support for Sunview, since we believe users should use the free X
window system rather than proprietary window systems.)

The manual should be fully correct in what it does cover, and it is therefore open to criticism
on anything it says—from specific examples and descriptive text, to the ordering of chapters and
sections. If something is confusing, or you find that you have to look at the sources or experiment
to learn something not covered in the manual, then perhaps the manual should be fixed. Please let

us know.

10 GNU Emacs Lisp Reference Manual

As you use the manual, we ask that you mark pages with corrections so you can later look
them up and send them in. If you think of a simple, real life example for a function or group of
functions, please make an effort to write it up and send it in. Please reference any comments to the
chapter name, section name, and function name, as appropriate, since page numbers and chapter
and section numbers will change. Also state the number of the edition which you are criticizing.

Please mail comments and corrections to
bug-lisp-manual@prep.ai.mit.edu

—Bil Lewis, Dan LaLiberte, Richard Stallman

1.2 Lisp History

Lisp (LISt Processing language) was first developed in the late 1950s at the Massachusetts
Institute of Technology for research in artificial intelligence. The great power of the Lisp language
makes it superior for other purposes as well, such as writing editing commands.

Dozens of Lisp implementations have been built over the years, each with its own idiosyncrasies.
Many of them were inspired by Maclisp, which was written in the 1960’s at MIT’s Project MAC.
Eventually the implementors of the descendents of Maclisp came together and developed a standard
for Lisp systems, called Common Lisp.

GNU Emacs Lisp is largely inspired by Maclisp, and a little by Common Lisp. If you know
Common Lisp, you will notice many similarities. However, many of the features of Common Lisp
have been omitted or simplified in order to reduce the memory requirements of GNU Emacs.
Sometimes the simplifications are so drastic that a Common Lisp user might be very confused. We
will occasionally point out how GNU Emacs Lisp differs from Common Lisp. If you don’t know
Common Lisp, don’t worry about it; this manual is self-contained.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may want
to skip this section and refer back to it later.

Chapter 1: Introduction 11

1.3.1 Some Terms

Throughout this manual, the phrases “the Lisp reader” and “the Lisp printer” are used to refer
to those routines in Lisp that convert textual representations of Lisp objects into actual objects,
and vice versa. See Section 2.1 [Printed Representation], page 17, for more details. You, the person
reading this manual, are thought of as “the programmer” and are addressed as “you”. “The user”
is the person who uses Lisp programs including those you write.

Examples of Lisp code appear in this font or form: (list 1 2 3). Names that represent argu-
ments or metasyntactic variables appear in this font or form: first-number.

1.3.2 niland t

In Lisp, the symbol nil is overloaded with three meanings: it is a symbol with the name ‘nil’;
it is the logical truth value false; and it is the empty list—the list of zero elements. When used as

a variable, nil always has the value nil.

As far as the Lisp reader is concerned, ‘()’ and ‘nil’ are identical: they stand for the same
object, the symbol nil. The different ways of writing the symbol are intended entirely for human
readers. After the Lisp reader has read either ‘()’ or ‘nil’, there is no way to determine which
representation was actually written by the programmer.

In this manual, we use () when we wish to emphasize that it means the empty list, and we use
nil when we wish to emphasize that it means the truth value false. That is a good convention to
use in Lisp programs also.

(cons ’foo ()) ; Emphasize the empty list
(not nil) ; Emphasize the truth value false

In contexts where a truth value is expected, any non-nil value is considered to be true. However,
t is the preferred way to represent the truth value true. When you need to choose a value which
represents true, and there is no other basis for choosing, use t. The symbol t always has value t.

In Emacs Lisp, nil and t are special symbols that always evaluate to themselves. This is so
that you do not need to quote them to use them as constants in a program. An attempt to change
their values results in a setting-constant error. See Section 10.6 [Accessing Variables|, page 160.

12 GNU Emacs Lisp Reference Manual

1.3.3 Evaluation Notation

A Lisp expression that you can evaluate is called a form. Evaluating a form always produces a
result, which is a Lisp object. In the examples in this manual, this is indicated with ‘=":

(car ’(1 2))
= 1

You can read this as “(car > (1 2)) evaluates to 1”.

When a form is a macro call, it expands into a new form for Lisp to evaluate. We show the
result of the expansion with ‘—’. We may or may not show the actual result of the evaluation of

the expanded form.

(third ’(a b c))
— (car (cdr (cdr ’(a b ¢))))
= ¢

Sometimes to help describe one form we show another form which produces identical results.

The exact equivalence of two forms is indicated with ‘=".

(make-sparse-keymap) = (list ’keymap)

1.3.4 Printing Notation

Many of the examples in this manual print text when they are evaluated. If you execute the
code from an example in a Lisp Interaction buffer (such as the buffer ‘*scratch#’), the printed
text is inserted into the buffer. If the example is executed by other means (such as by evaluating
the function eval-region), the text printed is usually displayed in the echo area. You should be

aware that text displayed in the echo area is truncated to a single line.

In examples that print text, the printed text is indicated with ‘ -’, irrespective of how the form
is executed. The value returned by evaluating the form (here bar) follows on a separate line.

(progn (print ’foo) (print ’bar))
- foo
- bar
= bar

Chapter 1: Introduction 13

1.3.5 Error Messages

Some examples cause errors to be signaled. In them, the error message (which always appears in
the echo area) is shown on a line starting with ‘[error] ’. Note that ‘[error] ’ itself does not appear
in the echo area.

(+ 23 ’x)
Wrong type argument: integer-or-marker-p, x

1.3.6 Buffer Text Notation

Some examples show modifications to text in a buffer, with “before” and “after” versions of the
text. In such cases, the entire contents of the buffer in question are included between two lines
of dashes containing the buffer name. In addition, the location of point is shown as ‘x’. (The
symbol for point, of course, is not part of the text in the buffer; it indicates the place between two

characters where point is located.)

—————————— Buffer: foo ————————-
This is the xcontents of foo.
—————————— Buffer: foo --—-———-----

(insert "changed ")

= nil
—————————— Buffer: foo ——————-——-
This is the changed xcontents of foo.
—————————— Buffer: foo --——-———-----

1.3.7 Format of Descriptions

Functions, variables, macros, commands, user options, and special forms are described in this
manual in a uniform format. The first line of a description contains the name of the item followed
by its arguments, if any. The category—function, variable, or whatever—is printed next to the

right margin. The description follows on succeeding lines, sometimes with examples.

14 GNU Emacs Lisp Reference Manual

1.3.7.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is followed
on the same line by a list of parameters. The names used for the parameters are also used in the
body of the description.

The appearance of the keyword &optional in the parameter list indicates that the arguments
for subsequent parameters may be omitted (omitted parameters default to nil). Do not write

&optional when you call the function.

The keyword &rest (which will always be followed by a single parameter) indicates that any
number of arguments can follow. The value of the single following parameter will be a list of all

these arguments. Do not write &rest when you call the function.

Here is a description of an imaginary function foo:

foo integerl &optional integer2 &rest integers Function
The function foo subtracts integerl from integer2, then adds all the rest of the ar-
guments to the result. If integer2 is not supplied, then the number 19 is used by
default.

(foo 1 5 3 9)
= 16
(foo 5)
= 14

More generally,

(foo w x y...)

(_+ -x w) y...)

Any parameter whose name contains the name of a type (e.g., integer, integerl or buffer) is
expected to be of that type. A plural of a type (such as buffers) often means a list of objects of
that type. Parameters named object may be of any type. (See Chapter 2 [Types of Lisp Object],
page 17, for a list of Emacs object types.) Parameters with other sorts of names (e.g., new-file)
are discussed specifically in the description of the function. In some sections, features common to

parameters of several functions are described at the beginning.

Chapter 1: Introduction 15

See Section 11.2 [Lambda Expressions|, page 174, for a more complete description of optional

and rest arguments.

Command, macro, and special form descriptions have the same format, but the word ‘Function’
is replaced by ‘Command’, ‘Macro’, or ‘Special Form’, respectively. Commands are simply functions
that may be called interactively; macros process their arguments differently from functions (the

arguments are not evaluated), but are presented the same way.

Special form descriptions use a more complex notation to specify optional and repeated param-
eters because they can break the argument list down into separate arguments in more complicated
ways. ‘[optional-arg]’ means that optional-arg is optional and ‘repeated-args. ..’ stands for zero or
more arguments. Parentheses are used when several arguments are grouped into additional levels
of list structure. Here is an example:

count-loop (var [from to [inc]]) body... Special Form
This imaginary special form implements a loop that executes the body forms and then
increments the variable var on each iteration. On the first iteration, the variable has
the value from; on subsequent iterations, it is incremented by 1 (or by inc if that is
given). The loop exits before executing body if var equals to. Here is an example:

(count-loop (i 0 10)
(prinl i) (princ " ")
(prinl (aref vector i)) (terpri))

If from and to are omitted, then var is bound to nil before the loop begins, and the
loop exits if var is non-nil at the beginning of an iteration. Here is an example:

(count-loop (done)
(if (pending)
(fixit)
(setq done t)))

In this special form, the arguments from and to are optional, but must both be present
or both absent. If they are present, inc may optionally be specified as well. These
arguments are grouped with the argument var into a list, to distinguish them from
body, which includes all remaining elements of the form.

16 GNU Emacs Lisp Reference Manual

1.3.7.2 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the user, certain
variables that exist specifically so that users can change them are called user options. Ordinary
variables and user options are described using a format like that for functions except that there are

no arguments.

Here is a description of the imaginary electric-future-map variable.

electric-future-map Variable
The value of this variable is a full keymap used by electric command future mode. The
functions in this map will allow you to edit commands you have not yet thought about

executing.

User option descriptions have the same format, but ‘Variable’ is replaced by ‘User Option’.

1.4 Acknowledgements

This manual was written by Robert Krawitz, Bil Lewis, Dan LaLiberte, Richard M. Stallman
and Chris Welty, the volunteers of the GNU manual group, in an effort extending over several years.
Robert J. Chassell helped to review and edit the manual, with the support of the Defense Advanced
Research Projects Agency, ARPA Order 6082, arranged by Warren A. Hunt, Jr. of Computational
Logic, Inc.

Corrections were supplied by Karl Berry, Jim Blandy, Bard Bloom, David Boyes, Alan Carroll,
David A. Duff, Beverly Erlebacher, David Eckelkamp, Eirik Fuller, Eric Hanchrow, George Hartzell,
Nathan Hess, Dan Jacobson, Jak Kirman, Bob Knighten, Frederick M. Korz, Joe Lammens, K.
Richard Magill, Brian Marick, Roland McGrath, Skip Montanaro, John Gardiner Myers, Arnold
D. Robbins, Raul Rockwell, Shinichirou Sugou, Kimmo Suominen, Edward Tharp, Bill Trost, Jean
White, Matthew Wilding, Carl Witty, Dale Worley, Rusty Wright, and David D. Zuhn.

Chapter 2: Lisp Data Types 17

2 Lisp Data Types

A Lisp object is a piece of data used and manipulated by Lisp programs. For our purposes, a
type or data type is a set of possible objects.

Every object belongs to at least one type. Objects of the same type have similar structures and
may usually be used in the same contexts. Types can overlap, and objects can belong to two or
more types. Consequently, we can ask whether an object belongs to a particular type, but not for
“the” type of an object.

A few fundamental object types are built into Emacs. These, from which all other types are
constructed, are called primitive types. Each object belongs to one and only one primitive type.
These types include integer, float, cons, symbol, string, vector, subr, byte-code function, and several
special types, such as buffer, that are related to editing. (See Section 2.4 [Editing Types|, page 32.)

Each primitive type has a corresponding Lisp function that checks whether an object is a member
of that type.

Note that Lisp is unlike many other languages in that Lisp objects are self-typing: the primitive
type of the object is implicit in the object itself. For example, if an object is a vector, it cannot be

treated as a number because Lisp knows it is a vector, not a number.

In most languages, the programmer must declare the data type of each variable, and the type
is known by the compiler but not represented in the data. Such type declarations do not exist in
Emacs Lisp. A Lisp variable can have any type of value, and remembers the type of any value you
store in it.

This chapter describes the purpose, printed representation, and read syntax of each of the
standard types in GNU Emacs Lisp. Details on how to use these types can be found in later
chapters.

2.1 Printed Representation and Read Syntax

The printed representation of an object is the format of the output generated by the Lisp
printer (the function print) for that object. The read syntax of an object is the format of the
input accepted by the Lisp reader (the function read) for that object. Most objects have more

18 GNU Emacs Lisp Reference Manual

than one possible read syntax. Some types of object have no read syntax; except for these cases,
the printed representation of an object is also a read syntax for it.

In other languages, an expression is text; it has no other form. In Lisp, an expression is primarily
a Lisp object and only secondarily the text that is the object’s read syntax. Often there is no need
to emphasize this distinction, but you must keep it in the back of your mind, or you will occasionally
be very confused.

Every type has a printed representation. Some types have no read syntax, since it may not
make sense to enter objects of these types directly in a Lisp program. For example, the buffer type
does not have a read syntax. Objects of these types are printed in hash notation: the characters
‘#<’ followed by a descriptive string (typically the type name followed by the name of the object),
and closed with a matching ‘>’. Hash notation cannot be read at all, so the Lisp reader signals the
error invalid-read-syntax whenever a ‘#<’ is encountered.

(current-buffer)
= #<buffer objects.texi>

When you evaluate an expression interactively, the Lisp interpreter first reads the textual repre-
sentation of it, producing a Lisp object, and then evaluates that object (see Chapter 8 [Evaluation],
page 119). However, evaluation and reading are separate activities. Reading returns the Lisp object
represented by the text that is read; the object may or may not be evaluated later. See Section 16.3
[Input Functions], page 254, for a description of read, the basic function for reading objects.

2.2 Comments

A comment is text that is written in a program only for the sake of humans that read the
program, and that has no effect on the meaning of the program. In Lisp, a comment starts with a
semicolon (‘;”) if it is not within a string or character constant, and continues to the end of line.
Comments are discarded by the Lisp reader, and do not become part of the Lisp objects which

represent the program within the Lisp system.

See Section A.4 [Comment Tips|, page 689, for conventions for formatting comments.

Chapter 2: Lisp Data Types 19

2.3 Programming Types

There are two general categories of types in Emacs Lisp: those having to do with Lisp program-
ming, and those having to do with editing. The former are provided in many Lisp implementations,
in one form or another. The latter are unique to Emacs Lisp.

2.3.1 Integer Type

Integers are the only kind of number in GNU Emacs Lisp, version 18. The range of values for
integers is —8388608 to 8388607 (24 bits; i.e., —2?% to 223 — 1) on most machines, but is 25 or 26
bits on some systems. It is important to note that the Emacs Lisp arithmetic functions do not
check for overflow. Thus (1+ 8388607) is —8388608 on 24-bit implementations.

The read syntax for numbers is a sequence of (base ten) digits with an optional sign. The printed

representation produced by the Lisp interpreter never has a leading ‘+’.

-1 ; The integer -1.
1 ; The integer 1.
+1 ; Also the integer 1.
16777217 ; Also the integer 1!

; (on a 24-bit or 25-bit implementation)

See Chapter 3 [Numbers|, page 43, for more information.

2.3.2 Floating Point Type

Emacs version 19 supports floating point numbers, if compiled with the macro LISP_FLOAT_TYPE
defined. The precise range of floating point numbers is machine-specific.

The printed representation for floating point numbers requires either a decimal point (with at
least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’, ‘15.0e2’, ‘1.5e3’,
and ‘.15e4’ are five ways of writing a floating point number whose value is 1500. They are all

equivalent.

See Chapter 3 [Numbers|, page 43, for more information.

20 GNU Emacs Lisp Reference Manual

2.3.3 Character Type

A character in Emacs Lisp is nothing more than an integer. In other words, characters are

represented by their character codes. For example, the character A is represented as the integer 65.

Individual characters are not often used in programs. It is far more common to work with
strings, which are sequences composed of characters. See Section 2.3.7 [String Type|, page 27.

Characters in strings, buffers, and files are currently limited to the range of 0 to 255. If an
arbitrary integer is used as a character for those purposes, only the lower eight bits are significant.
Characters that represent keyboard input have a much wider range.

Since characters are really integers, the printed representation of a character is a decimal number.
This is also a possible read syntax for a character, but writing characters that way in Lisp programs
is a very bad idea. You should always use the special read syntax formats that Emacs Lisp provides
for characters. These syntax formats start with a question mark.

The usual read syntax for alphanumeric characters is a question mark followed by the character;

thus, ‘?A’ for the character A, ‘?B’ for the character B, and ‘?a’ for the character a.

For example:
70 = 81
?q = 113
You can use the same syntax for punctuation characters, but it is often a good idea to add a

‘\’ to prevent Lisp mode from getting confused. For example, ‘?\ ’ is the way to write the space
character. If the character is ‘\’, you must use a second ‘\’ to quote it: ‘?\\’.

You can express the characters control-g, backspace, tab, newline, vertical tab, formfeed, return,
and escape as ‘?\a’, ‘?\b’, ‘?\t’, ‘?\n’, ‘“?\v’, ‘?\f’, ‘?\r’, ‘?\e’, respectively. Those values are 7,
8,9, 10, 11, 12, 13, and 27 in decimal. Thus,

\Na = 7 ; C-g

?\b = 8 ; backspace, BS, C-h

2\t = 9 ; tab, TAB, C-1i

?\n = 10 ; newline, LFD, C-j

2\v = 11 ; vertical tab, C-k

N\ = 12 ; formfeed character, C-1

Chapter 2: Lisp Data Types 21

?\r = 13 ; carriage return, RET, C-m
\e = 27 ; escape character, ESC, C-[
2\\ = 92 ; backslash character, \

These sequences which start with backslash are also known as escape sequences, because back-
slash plays the role of an escape character, but they have nothing to do with the character ESC.

Control characters may be represented using yet another read syntax. This consists of a question
mark followed by a backslash, caret, and the corresponding non-control character, in either upper
or lower case. For example, either ‘?\"I’ or ‘?\"i’ may be used as the read syntax for the character
C-1i, the character whose value is 9.

Instead of the *~’, you can use ‘C-’; thus, ‘?\C-1i’ is equivalent to ‘?\"I’ and to ‘?\"i”:

\"I = 9

?\C-I = 9

For use in strings and buffers, you are limited to the control characters that exist in ASCII, but
for keyboard input purposes, you can turn any character into a control character with ‘C-’. The
character codes for these characters include the 2**22 bit as well as the code for the non-control
character. Ordinary terminals have no way of generating non-ASCII control characters, but you

can generate them straightforwardly using an X terminal.

The DEL key can be considered and written as Control-7:

2\"7 = 127

?\C-7 = 127

(e~

When you represent control characters to be found in files or strings, we recommend the
syntax; but when you refer to keyboard input, we prefer the ‘C-’ syntax. This does not affect the

meaning of the program, but may guide the understanding of people who read it.

A meta character is a character typed with the META key. The integer that represents such a
character has the 2**23 bit set (which on most machines makes it a negative number). We use
high bits for this and other modifiers to make possible a wide range of basic character codes.

22 GNU Emacs Lisp Reference Manual

In a string, the 2**7 bit indicates a meta character, so the meta characters that can fit in a
string have codes in the range from 128 to 255, and are the meta versions of the ordinary ASCII
characters. (In Emacs versions 18 and older, this convention was used for characters outside of
strings as well.)

The read syntax for meta characters uses ‘\M-’. For example, ‘?\M-A’ stands for M-A. You can
use ‘\M-’ together with octal codes, ‘\C-’, or any other syntax for a character. Thus, you can write
M-A as ‘?\M-A’, or as ‘?\M-\101". Likewise, you can write C-M-b as ‘?\M-\C-b’, ‘?\C-\M-b’, or
“?\M-\002".

The shift modifier is used in indicating the case of a character in special circumstances. The
case of an ordinary letter is indicated by its character code as part of ASCII, but ASCII has no
way to represent whether a control character is upper case or lower case. Emacs uses the 2*¥*21 bit
to indicate that the shift key was used for typing a control character. This distinction is possible
only when you use X terminals or other special terminals; ordinary terminals do not indicate the

distinction to the computer in any way.

The X Window system defines three other modifier bits that can be set in a character: hyper,
super and alt. The syntaxes for these bits are ‘\H-’, ‘\s-" and ‘\A-". Thus, ‘?\H-\M-\A-x’ represents
Alt-Hyper-Meta-x. Numerically, the bit values are 2**18 for alt, 2**19 for super and 2**20 for
hyper.

Finally, the most general read syntax consists of a question mark followed by a backslash and
the character code in octal (up to three octal digits); thus, ‘?\101’ for the character A, ‘?\001’ for
the character C-a, and ?\002 for the character C-b. Although this syntax can represent any ASCII
character, it is preferred only when the precise octal value is more important than the ASCII

representation.
?\012 = 10 ?\n = 10 7\C-j = 10
?\101 = 65 7A = 65

A backslash is allowed, and harmless, preceding any character without a special escape meaning;
thus, ‘?\A’ is equivalent to ‘?A’. There is no reason to use a backslash before most such characters.
However, any of the characters ‘OO\|;’ “"#.,’ should be preceded by a backslash to avoid confusing
the Emacs commands for editing Lisp code. Whitespace characters such as space, tab, newline and
formfeed should also be preceded by a backslash. However, it is cleaner to use one of the easily

readable escape sequences, such as ‘\t’, instead of an actual control character such as a tab.

Chapter 2: Lisp Data Types 23

2.3.4 Sequence Types

A sequence is a Lisp object that represents an ordered set of elements. There are two kinds
of sequence in Emacs Lisp, lists and arrays. Thus, an object of type list or of type array is also

considered a sequence.

Arrays are further subdivided into strings and vectors. Vectors can hold elements of any type,
but string elements must be characters in the range from 0 to 255. However, the characters in a
string can have text properties; vectors do not support text properties even when their elements
happen to be characters.

Lists, strings and vectors are different, but they have important similarities. For example, all
have a length I, and all have elements which can be indexed from zero to I minus one. Also, several
functions, called sequence functions, accept any kind of sequence. For example, the function elt
can be used to extract an element of a sequence, given its index. See Chapter 6 [Sequences Arrays

Vectors|, page 101.

It is impossible to read the same sequence twice, in the sense of eq (see Section 2.6 [Equality
Predicates|, page 39), since sequences are always created anew upon reading. There is one exception:
the empty list () always stands for the same object, nil.

2.3.5 List Type

A list is a series of cons cells, linked together. A cons cell is an object comprising two pointers
named the CAR and the CDR. Each of them can point to any Lisp object, but when the cons cell is
part of a list, the CDR points either to another cons cell or to the empty list. See Chapter 5 [Lists],
page 77, for functions that work on lists.

The names CAR and CDR have only historical meaning now. The original Lisp implementation
ran on an IBM 704 computer which divided words into two parts, called the “address” part and the
“decrement”; CAR was an instruction to extract the contents of the address part of a register, and
CDR an instruction to extract the contents of the decrement. By contrast, “cons cells” are named
for the function cons that creates them, which in turn is named for its purpose, the construction
of cells.

Because cons cells are so central to Lisp, we also have a word for “an object which is not a cons
cell”. These objects are called atoms.

24 GNU Emacs Lisp Reference Manual

The read syntax and printed representation for lists are identical, and consist of a left parenthesis,

an arbitrary number of elements, and a right parenthesis.

Upon reading, any object inside the parentheses is made into an element of the list. That is,
a cons cell is made for each element. The CAR of the cons cell points to the element, and its CDR
points to the next cons cell which holds the next element in the list. The CDR of the last cons cell

is set to point to nil.

A list can be illustrated by a diagram in which the cons cells are shown as pairs of boxes. (The
Lisp reader cannot read such an illustration; unlike the textual notation, which can be understood
both humans and computers, the box illustrations can only be understood by humans.) The

following represents the three-element list (rose violet buttercup):

--> rose --> violet --> buttercup

In the diagram, each box represents a slot that can refer to any Lisp object. Each pair of boxes
represents a cons cell. Each arrow is a reference to a Lisp object, either an atom or another cons

cell.

In this example, the first box, the CAR of the first cons cell, refers to or “contains” rose (a
symbol). The second box, the CDR of the first cons cell, refers to the next pair of boxes, the second
cons cell. The CAR of the second cons cell refers to violet and the CDR refers to the third cons
cell. The CDR of the third (and last) cons cell refers to nil.

Here is another diagram of the same list, (rose violet buttercup), sketched in a different

manner:

| car | cdr | | car | cdr | | car | cdr |

Chapter 2: Lisp Data Types 25

A list with no elements in it is the empty list; it is identical to the symbol nil. In other words,
nil is both a symbol and a list.

Here are examples of lists written in Lisp syntax:

(A 2"A") ; A list of three elements.
O ; A list of no elements (the empty list).
nil ; A list of no elements (the empty list).
A Om" ; A list of one element: the string "A ()".
a O ; A list of two elements: A and the empty list.
(A nil) ; Equivalent to the previous.
((A B Q) ;A list of one element
; (which is a list of three elements).

Here is the list (A ()), or equivalently (A nil), depicted with boxes and arrows:

2.3.5.1 Dotted Pair Notation

Dotted pair notation is an alternative syntax for cons cells that represents the CAR and CDR
explicitly. In this syntax, (a . b) stands for a cons cell whose CAR is the object a, and whose CDR
is the object b. Dotted pair notation is therefore more general than list syntax. In the dotted pair
notation, the list ‘(1 2 3)’ is written as ‘(1 . (2 . (3 . nil)))’. For nil-terminated lists, the two
notations produce the same result, but list notation is usually clearer and more convenient when
it is applicable. When printing a list, the dotted pair notation is only used if the CDR of a cell is
not a list.

Box notation can also be used to illustrate what dotted pairs look like. For example, (rose .

violet) is diagrammed as follows:

26 GNU Emacs Lisp Reference Manual

|___l___I-=-> violet
|
|

-—> rose

Dotted pair notation can be combined with list notation to represent a chain of cons cells with
a non-nil final CDR. For example, (rose violet . buttercup) is equivalent to (rose . (violet

. buttercup)). The object looks like this:

l___l___1-=> |___l___l--> buttercup

--> rose --> violet

These diagrams make it evident that (rose . violet . buttercup) must have an invalid syntax
since it would require that a cons cell have three parts rather than two.

The list (rose violet) is equivalent to (rose . (violet)) and looks like this:

--> rose --> violet

Similarly, the three-element list (rose violet buttercup) is equivalent to (rose . (violet .

(buttercup))).

2.3.5.2 Association List Type

An association list or alist is a specially-constructed list whose elements are cons cells. In each
element, the CAR is considered a key, and the CDR is considered an associated value. (In some
cases, the associated value is stored in the CAR of the CDR.) Association lists are often used to
implement stacks, since new associations may easily be added to or removed from the front of the
list.

Chapter 2: Lisp Data Types 27

For example,

(setq alist-of-colors
’((rose . red) (lily . white) (buttercup . yellow)))

sets the variable alist-of-colors to an alist of three elements. In the first element, rose is the
key and red is the value.

See Section 5.8 [Association Lists|, page 96, for a further explanation of alists and for functions
that work on alists.

2.3.6 Array Type

An array is composed of an arbitrary number of other Lisp objects, arranged in a contiguous
block of memory. Any element of an array may be accessed in constant time. In contrast, accessing
an element of a list requires time proportional to the position of the element in the list. (Elements
at the end of a list take longer to access than elements at the beginning of a list.)

Emacs defines two types of array, strings and vectors. A string is an array of characters and a
vector is an array of arbitrary objects. Both are one-dimensional. (Most other programming lan-
guages support multidimensional arrays, but we don’t think they are essential in Emacs Lisp.) Each
type of array has its own read syntax; see Section 2.3.7 [String Type|, page 27, and Section 2.3.8
[Vector Type], page 29.

An array may have any length up to the largest integer; but once created, it has a fixed size.
The first element of an array has index zero, the second element has index 1, and so on. This is

called zero-origin indexing. For example, an array of four elements has indices 0, 1, 2, and 3.

The array type is contained in the sequence type and contains both strings and vectors.

2.3.7 String Type

A string is an array of characters. Strings are used for many purposes in Emacs, as can be
expected in a text editor; for example, as the names of Lisp symbols, as messages for the user,
and to represent text extracted from buffers. Strings in Lisp are constants; evaluation of a string
returns the same string.

28 GNU Emacs Lisp Reference Manual

The read syntax for strings is a double-quote, an arbitrary number of characters, and another
double-quote, "like this". The Lisp reader accepts the same formats for reading the characters of
a string as it does for reading single characters (without the question mark that begins a character
literal). You can enter a nonprinting character such as tab, C-a or M-C-A using the convenient
escape sequences, like this: "\t, \C-a, \M-\C-a". You can include a double-quote in a string by
preceding it with a backslash; thus, "\"" is a string containing just a single double-quote character.
(See Section 2.3.3 [Character Type], page 20, for a description of the read syntax for characters.)

If you use the ‘\M-’ syntax to indicate a meta character in a string constant, this sets the 2**7
bit of the character in the string. This is not the same representation that the meta modifier has
in a character regarded as a simple integer. See Section 2.3.3 [Character Type|, page 20.

Strings cannot hold characters that have the hyper, super or alt modifiers; they can hold ASCII
control characters, but no others. They do not distinguish case in ASCII control characters.

In contrast with the C programming language, Emacs Lisp allows newlines in string literals.
But an escaped newline—one that is preceded by ‘\’—does not become part of the string; i.e., the

Lisp reader ignores an escaped newline in a string literal.

"It is useful to include newlines
in documentation strings,
but the newline is \
ignored if escaped."
= "It is useful to include newlines
in documentation strings,
but the newline is ignored if escaped."

The printed representation of a string consists of a double-quote, the characters it contains,
and another double-quote. However, any backslash or double-quote characters in the string are
preceded with a backslash like this: "this \" is an embedded quote".

A string can hold properties of the text it contains, in addition to the characters themselves.
This enables programs that copy text between strings and buffers to preserve the properties with
no special effort. See Section 29.17 [Text Properties], page 551. Strings with text properties have

a special read and print syntax:

#("characters" property-data. . .)

where property-data is zero or more elements in groups of three as follows:

Chapter 2: Lisp Data Types 29

beg end plist

The elements beg and end are integers, and together specify a portion of the string; plist is the
property list for that portion.

See Chapter 4 [Strings and Characters|, page 61, for functions that work on strings.

2.3.8 Vector Type

A vector is a one-dimensional array of elements of any type. It takes a constant amount of time
to access any element of a vector. (In a list, the access time of an element is proportional to the
distance of the element from the beginning of the list.)

The printed representation of a vector consists of a left square bracket, the elements, and a right
square bracket. This is also the read syntax. Like numbers and strings, vectors are considered
constants for evaluation.

[1 "two" (three)] ;A vector of three elements.
= [1 "two" (three)]

See Section 6.4 [Vectors], page 106, for functions that work with vectors.

2.3.9 Symbol Type

A symbol in GNU Emacs Lisp is an object with a name. The symbol name serves as the printed
representation of the symbol. In ordinary use, the name is unique—no two symbols have the same

name.

A symbol may be used in programs as a variable, as a function name, or to hold a list of
properties. Or it may serve only to be distinct from all other Lisp objects, so that its presence in
a data structure may be recognized reliably. In a given context, usually only one of these uses is
intended.

A symbol name can contain any characters whatever. Most symbol names are written with
letters, digits, and the punctuation characters ‘—=+=*/’. Such names require no special punctuation;
the characters of the name suffice as long as the name does not look like a number. (If it does,

write a ‘\’ at the beginning of the name to force interpretation as a symbol.) The characters

30 GNU Emacs Lisp Reference Manual

C_71@$% & :<>{} are less often used but also require no special punctuation. Any other characters
may be included in a symbol’s name by escaping them with a backslash. In contrast to its use
in strings, however, a backslash in the name of a symbol quotes the single character that follows
the backslash, without conversion. For example, in a string, ‘\t’ represents a tab character; in the
name of a symbol, however, ‘\t’ merely quotes the letter t. To have a symbol with a tab character
in its name, you must actually type an tab (preceded with a backslash). But you would hardly
ever do such a thing.

Common Lisp note: in Common Lisp, lower case letters are always “folded” to upper
case, unless they are explicitly escaped. This is in contrast to Emacs Lisp, in which
upper case and lower case letters are distinct.

Here are several examples of symbol names. Note that the ‘+’ in the fifth example is escaped to
prevent it from being read as a number. This is not necessary in the last example because the rest
of the name makes it invalid as a number.

foo ; A symbol named ‘foo’.
FOO ; A symbol named ‘FOQ’, different from ‘foo’.
char-to-string ; A symbol named ‘char-to-string’.
1+ ; A symbol named 1+’
; (not ‘+1’, which is an integer).
\+1 ; A symbol named ‘+1’
; (not a very readable name).
NG\ 1N 2)) ; A symbol named ‘(* 1 2)’ (a worse name).

+-x/_"10%%"&=:<>{} ; A symbol named ‘+-*/_~10$%"&=:<>{}".
; These characters need not be escaped.

2.3.10 Lisp Function Type

Just as functions in other programming languages are executable, Lisp function objects are pieces
of executable code. However, functions in Lisp are primarily Lisp objects, and only secondarily the
text which represents them. These Lisp objects are lambda expressions: lists whose first element
is the symbol lambda (see Section 11.2 [Lambda Expressions|, page 174).

In most programming languages, it is impossible to have a function without a name. In Lisp,
a function has no intrinsic name. A lambda expression is also called an anonymous function (see
Section 11.7 [Anonymous Functions|, page 185). A named function in Lisp is actually a symbol
with a valid function in its function cell (see Section 11.4 [Defining Functions], page 180).

Chapter 2: Lisp Data Types 31

Most of the time, functions are called when their names are written in Lisp expressions in Lisp
programs. However, a function object found or constructed at run time can be called and passed
arguments with the primitive functions funcall and apply. See Section 11.5 [Calling Functions],
page 181.

2.3.11 Lisp Macro Type

A Lisp macro is a user-defined construct that extends the Lisp language. It is represented as
an object much like a function, but with different parameter-passing semantics. A Lisp macro has
the form of a list whose first element is the symbol macro and whose CDR is a Lisp function object,
including the lambda symbol.

Lisp macro objects are usually defined with the built-in defmacro function, but any list that
begins with macro is a macro as far as Emacs is concerned. See Chapter 12 [Macros|, page 193, for
an explanation of how to write a macro.

2.3.12 Primitive Function Type

A primitive function is a function callable from Lisp but written in the C programming language.
Primitive functions are also called subrs or built-in functions. (The word “subr” is derived from
“subroutine”.) Most primitive functions evaluate all their arguments when they are called. A
primitive function that does not evaluate all its arguments is called a special form (see Section 8.2.7
[Special Forms], page 127).

It does not matter to the caller of a function whether the function is primitive. However, this
does matter if you are trying to substitute a function written in Lisp for a primitive of the same
name. The reason is that the primitive function may be called directly from C code. When the
redefined function is called from Lisp, the new definition will be used; but calls from C code may
still use the old definition.

The term function is used to refer to all Emacs functions, whether written in Lisp or C. See
Section 2.3.10 [Lisp Function Type|, page 30, for information about the functions written in Lisp.

Primitive functions have no read syntax and print in hash notation with the name of the sub-
routine.

32 GNU Emacs Lisp Reference Manual

(symbol-function ’car) ; Access the function cell
; of the symbol.
= #<subr car>
(subrp (symbol-function ’car)) ; Is this a primitive function?
=t 5 Yes.

2.3.13 Byte-Code Function Type

The byte compiler produces byte-code function objects. Internally, a byte-code function object
is much like a vector; however, the evaluator handles this data type specially when it appears as
a function to be called. See Chapter 14 [Byte Compilation|, page 213, for information about the
byte compiler.

The printed representation for a byte-code function object is like that for a vector, with an
additional ‘#’ before the opening ‘[.

2.3.14 Autoload Type

An autoload object is a list whose first element is the symbol autoload. It is stored as the
function definition of a symbol to say that a file of Lisp code should be loaded when necessary to
find the true definition of that symbol. The autoload object contains the name of the file, plus

some other information about the real definition.

After the file has been loaded, the symbol should have a new function definition that is not an
autoload object. The new definition is then called as if it had been there to begin with. From the
user’s point of view, the function call works as expected, using the function definition in the loaded
file.

An autoload object is usually created with the function autoload, which stores the object in
the function cell of a symbol. See Section 13.2 [Autoload], page 205, for more details.

2.4 Editing Types

The types in the previous section are common to many Lisp-like languages. But Emacs Lisp
provides several additional data types for purposes connected with editing.

Chapter 2: Lisp Data Types 33

2.4.1 Buffer Type

A buffer is an object that holds text that can be edited (see Chapter 24 [Buffers|, page 429).
Most buffers hold the contents of a disk file (see Chapter 22 [Files], page 385) so they can be edited,
but some are used for other purposes. Most buffers are also meant to be seen by the user, and
therefore displayed, at some time, in a window (see Chapter 25 [Windows]|, page 445). But a buffer
need not be displayed in a window.

The contents of a buffer are much like a string, but buffers are not used like strings in Emacs
Lisp, and the available operations are different. For example, text can be inserted into a buffer
very quickly, while “inserting” text into a string is accomplished by concatenation and the result

is an entirely new string object.

Each buffer has a designated position called point (see Chapter 27 [Positions|, page 491). And
one buffer is the current buffer. Most editing commands act on the contents of the current buffer in
the neighborhood of point. Many other functions manipulate or test the characters in the current
buffer and much of this manual is devoted to describing these functions (see Chapter 29 [Text],
page 517).

Several other data structures are associated with each buffer:

e a local syntax table (see Chapter 31 [Syntax Tables], page 583);
e alocal keymap (see Chapter 19 [Keymaps], page 327); and,

e a local variable binding list (see Section 10.9 [Buffer-Local Variables], page 166).

The local keymap and variable list contain entries which individually override global bindings or
values. These are used to customize the behavior of programs in different buffers, without actually

changing the programs.

Buffers have no read syntax. They print in hash notation with the buffer name.

(current-buffer)
= #<buffer objects.texi>

34 GNU Emacs Lisp Reference Manual

2.4.2 Window Type

A window describes the portion of the terminal screen that Emacs uses to display a buffer.
Every window has one associated buffer, whose contents appear in the window. By contrast, a
given buffer may appear in one window, no window, or several windows.

Though many windows may exist simultaneously, one window is designated the selected window.
This is the window where the cursor is (usually) displayed when Emacs is ready for a command.
The selected window usually displays the current buffer, but this is not necessarily the case.

Windows are grouped on the screen into frames; each window belongs to one and only one frame.

See Section 2.4.3 [Frame Type], page 34.

Windows have no read syntax. They print in hash notation, giving the window number and the
name of the buffer being displayed. The window numbers exist to identify windows uniquely, since
the buffer displayed in any given window can change frequently.

(selected-window)
= #<window 1 on objects.texi>

See Chapter 25 [Windows], page 445, for a description of the functions that work on windows.

2.4.3 Frame Type

A frame is a rectangle on the screen that contains one or more Emacs windows. A frame
initially contains a single main window (plus perhaps a minibuffer window) which you can subdivide

vertically or horizontally into smaller windows.

Frames have no read syntax. They print in hash notation, giving the frame’s title, plus its

address in core (useful to identify the frame uniquely).

(selected-frame)
= #<frame xemacs@mole.gnu.ai.mit.edu 0xdac80>

See Chapter 26 [Frames], page 473, for a description of the functions that work on frames.

Chapter 2: Lisp Data Types 35

2.4.4 Window Configuration Type

A window configuration stores information about the positions and sizes of windows at the time
the window configuration is created, so that the screen layout may be recreated later.

Window configurations have no read syntax. They print as ‘#<window-configuration>’. See
Section 25.16 [Window Configurations], page 471, for a description of several functions related to

window configurations.

2.4.5 Marker Type

A marker denotes a position in a specific buffer. Markers therefore have two components: one
for the buffer, and one for the position. The position value is changed automatically as necessary
as text is inserted into or deleted from the buffer. This is to ensure that the marker always points
between the same two characters in the buffer.

Markers have no read syntax. They print in hash notation, giving the current character position
and the name of the buffer.

(point-marker)
= #<marker at 10779 in objects.texi>

See Chapter 28 [Markers], page 507, for information on how to test, create, copy, and move
markers.

2.4.6 Process Type

The word process means a running program. Emacs itself runs in a process of this sort. How-
ever, in Emacs Lisp, a process is a Lisp object that designates a subprocess created by Emacs
process. External subprocesses, such as shells, GDB, ftp, and compilers, may be used to extend

the processing capability of Emacs.

A process takes input from Emacs and returns output to Emacs for further manipulation. Both

text and signals can be communicated between Emacs and a subprocess.

Processes have no read syntax. They print in hash notation, giving the name of the process:

36 GNU Emacs Lisp Reference Manual

(process-1list)
= (#<process shell>)

See Chapter 33 [Processes|, page 603, for information about functions that create, delete, return

information about, send input or signals to, and receive output from processes.

2.4.7 Stream Type

A stream is an object that can be used as a source or sink for characters—either to supply char-
acters for input or to accept them as output. Many different types can be used this way: markers,
buffers, strings, and functions. Most often, input streams (character sources) obtain characters
from the keyboard, a buffer, or a file, and output streams (character sinks) send characters to a
buffer, such as a ‘*Help#’ buffer, or to the echo area.

The object nil, in addition to its other meanings, may be used as a stream. It stands for the
value of the variable standard-input or standard-output. Also, the object t as a stream specifies
input using the minibuffer (see Chapter 17 [Minibuffers], page 263) or output in the echo area (see
Section 35.4 [The Echo Areal, page 649).

Streams have no special printed representation or read syntax, and print as whatever primitive
type they are.

See Chapter 16 [Streams|, page 251, for a description of various functions related to streams,

including various parsing and printing functions.

2.4.8 Keymap Type

A keymap maps keys typed by the user to functions. This mapping controls how the user’s

command input is executed. A keymap is actually a list whose CAR is the symbol keymap.

See Chapter 19 [Keymaps], page 327, for information about creating keymaps, handling prefix
keys, local as well as global keymaps, and changing key bindings.

Chapter 2: Lisp Data Types 37

2.4.9 Syntax Table Type

A syntax table is a vector of 256 integers. Each element of the vector defines how one character
is interpreted when it appears in a buffer. For example, in C mode (see Section 20.1 [Major
Modes|, page 353), the ‘+’ character is punctuation, but in Lisp mode it is a valid character in a
symbol. These different interpretations are effected by changing the syntax table entry for ‘+’, i.e.,
at index 43.

Syntax tables are only used for scanning text in buffers, not for reading Lisp expressions. The
table the Lisp interpreter uses to read expressions is built into the Emacs source code and cannot
be changed; thus, to change the list delimiters to be ‘{’ and ‘}’ instead of ‘C and ‘)’ would be
impossible.

See Chapter 31 [Syntax Tables|, page 583, for details about syntax classes and how to make and
modify syntax tables.

2.4.10 Display Table Type

A display table specifies how to display each character code. Each buffer and each window can
have its own display table. A display table is actually a vector of length 261. See Section 35.13
[Display Tables], page 664.

2.4.11 Overlay Type

An overlay specifies temporary alteration of the display appearance of a part of a buffer. It
contains markers delimiting a range of the buffer, plus a property list (a list whose elements are
alternating property names and values). Overlays are used to present parts of the buffer temporarily
in a different display style.

See Section 35.8 [Overlays|, page 655, for how to create and use overlays.

2.5 Type Predicates

The Emacs Lisp interpreter itself does not perform type checking on the actual arguments
passed to functions when they are called. It could not do otherwise, since variables in Lisp are not

38 GNU Emacs Lisp Reference Manual

declared to be of a certain type, as they are in other programming languages. It is therefore up to
the individual function to test whether each actual argument belongs to a type that can be used
by the function.

All built-in functions do check the types of their actual arguments when appropriate and signal
a wrong-type-argument error if an argument is of the wrong type. For example, here is what
happens if you pass an argument to + which it cannot handle:

(+ 2 ’a)
Wrong type argument: integer-or-marker-p, a

Many functions, called type predicates, are provided to test whether an object is a member of
a given type. (Following a convention of long standing, the names of most Emacs Lisp predicates
end in ‘p’.)

Here is a table of predefined type predicates, in alphabetical order, with references to further
information.

atom see Section 5.3 [List-related Predicates], page 79
arrayp see Section 6.3 [Array Functions], page 104

bufferp see Section 24.1 [Buffer Basics], page 429

byte-code-function-p
see Section 2.3.13 [Byte-Code Type], page 32

case-table-p
see Section 4.8 [Case Table|, page 73

char-or-string-p

see Section 4.2 [Predicates for Strings|, page 62
commandp see Section 18.3 [Interactive Call], page 294
consp see Section 5.3 [List-related Predicates], page 79
floatp see Section 3.3 [Predicates on Numbers], page 45
frame-live-p

see Section 26.3 [Deleting Frames], page 478

framep see Chapter 26 [Frames], page 473
integer—-or-marker-p
see Section 28.2 [Predicates on Markers], page 508

integerp see Section 3.3 [Predicates on Numbers|, page 45

Chapter 2: Lisp Data Types 39

keymapp see Section 19.3 [Creating Keymaps], page 330
listp see Section 5.3 [List-related Predicates], page 79
markerp see Section 28.2 [Predicates on Markers|, page 508
natnump see Section 3.3 [Predicates on Numbers], page 45
nlistp see Section 5.3 [List-related Predicates|, page 79

numberp see Section 3.3 [Predicates on Numbers], page 45
number-or-marker-p

see Section 28.2 [Predicates on Markers|, page 508
overlayp see Section 35.8 [Overlays|, page 655

processp see Chapter 33 [Processes|, page 603
sequencep

see Section 6.1 [Sequence Functions], page 101
stringp see Section 4.2 [Predicates for Strings|, page 62
subrp see Section 11.8 [Function Cells|, page 187

symbolp see Chapter 7 [Symbols], page 109

syntax-table-p
see Chapter 31 [Syntax Tables], page 583

user-variable-p
see Section 10.5 [Defining Variables], page 157
vectorp see Section 6.4 [Vectors], page 106

window-configuration-p
see Section 25.16 [Window Configurations|, page 471

window-live-p
see Section 25.3 [Deleting Windows], page 449

windowp see Section 25.1 [Basic Windows|, page 445

2.6 Equality Predicates

Here we describe two functions that test for equality between any two objects. Other functions
test equality between objects of specific types, e.g., strings. See the appropriate chapter describing
the data type for these predicates.

40 GNU Emacs Lisp Reference Manual

eq objectl object2 Function
This function returns t if objectl and object2 are the same object, nil otherwise. The
“same object” means that a change in one will be reflected by the same change in the
other.

eq returns t if objectl and object2 are integers with the same value. Also, since symbol
names are normally unique, if the arguments are symbols with the same name, they are
eq. For other types (e.g., lists, vectors, strings), two arguments with the same contents
or elements are not necessarily eq to each other: they are eq only if they are the same
object.

(The make-symbol function returns an uninterned symbol that is not interned in the
standard obarray. When uninterned symbols are in use, symbol names are no longer
unique. Distinct symbols with the same name are not eq. See Section 7.3 [Creating
Symbols], page 112.)

(eq ’foo ’foo)
=t

(eq 456 456)
=t

(eq "asdf" "asdf")
= nil

(eq 7(1 (2 (3))) ’(1 (2 (3))))
= nil

(eq [(1 2) 3] [(1 2) 3])
= nil

(eq (point-marker) (point-marker))
= nil

equal objectl object2 Function
This function returns t if objectl and object2 have equal components, nil otherwise.
Whereas eq tests if its arguments are the same object, equal looks inside nonidentical
arguments to see if their elements are the same. So, if two objects are eq, they are
equal, but the converse is not always true.

(equal ’foo ’foo)
=t

Chapter 2: Lisp Data Types 41

(equal 456 456)

=t

(equal "asdf" "asdf")
=t

(eq "asdf" "asdf")
= nil

(equal ’(1 (2 (3))) (1 (2 (3))))
=t

(eq 7(1 (2 (3))) ’(1 (2 (3))))
= nil

(equal [(1 2) 3] [(1 2) 31D
=t

(eq [(1 2) 3] [(1 2) 31)
= nil

(equal (point-marker) (point-marker))
=t

(eq (point-marker) (point-marker))
= nil

Comparison of strings is case-sensitive.

(equal "asdf" "ASDF")
= nil

The test for equality is implemented recursively, and circular lists may therefore cause infinite

recursion (leading to an error).

42

GNU Emacs Lisp Reference Manual

Chapter 3: Numbers 43

3 Numbers

GNU Emacs supports two numeric data types: integers and floating point numbers. Integers
are whole numbers such as —3, 0, 7, 13, and 511. Their values are exact. Floating point numbers
are numbers with fractional parts, such as —4.5, 0.0, or 2.71828. They can also be expressed in
an exponential notation as well: thus, 1.5e2 equals 150; in this example, ‘€2’ stands for ten to the
second power, and is multiplied by 1.5. Floating point values are not exact; they have a fixed,

limited amount of precision.

Support for floating point numbers is a new feature in Emacs 19, and it is controlled by a
separate compilation option, so you may encounter a site where Emacs does not support them.

3.1 Integer Basics

The range of values for an integer depends on the machine. The range is —8388608 to 8388607
(24 bits; i.e., —2% to 2% — 1) on most machines, but on others it is —16777216 to 16777215 (25
bits), or —33554432 to 33554431 (26 bits). All of the examples shown below assume an integer has
24 bits.

The Lisp reader reads numbers as a sequence of digits with an optional sign.

1 ; The integer 1.
+1 ; Also the integer 1.
-1 ; The integer —1.
16777217 ; Also the integer 1, due to overflow.
0 ; The number 0.
-0 ; The number 0.
1. ; The integer 1.

To understand how various functions work on integers, especially the bitwise operators (see
Section 3.7 [Bitwise Operations|, page 52), it is often helpful to view the numbers in their binary
form.

In 24 bit binary, the decimal integer 5 looks like this:

0000 0000 0000 0000 0000 0101

44 GNU Emacs Lisp Reference Manual

(We have inserted spaces between groups of 4 bits, and two spaces between groups of 8 bits, to

make the binary integer easier to read.)

The integer —1 looks like this:

1111 1111 1111 1111 1111 1111
—1 is represented as 24 ones. (This is called two’s complement notation.)

The negative integer, —5, is creating by subtracting 4 from —1. In binary, the decimal integer
4 is 100. Consequently, —5 looks like this:

1111 1111 1111 1111 1111 1011

In this implementation, the largest 24 bit binary integer is the decimal integer 8,388,607. In
binary, this number looks like this:

0111 1111 1111 1111 1111 1111

Since the arithmetic functions do not check whether integers go outside their range, when you
add 1 to 8,388,607, the value is negative integer —8,388,608:

(+ 1 8388607)
= -8388608
= 1000 0000 0000 0000 0000 0000

Many of the following functions accept markers for arguments as well as integers. (See Chap-
ter 28 [Markers|, page 507.) More precisely, the actual parameters to such functions may be either
integers or markers, which is why we often give these parameters the name int-or-marker. When
the actual parameter is a marker, the position value of the marker is used and the buffer of the
marker is ignored.

3.2 Floating Point Basics

Emacs version 19 supports floating point numbers, if compiled with the macro LISP_FLOAT_
TYPE defined. The precise range of floating point numbers is machine-specific; it is the same as the
range of the C data type double on the machine in question.

Chapter 3: Numbers 45

The printed representation for floating point numbers requires either a decimal point (with at
least one digit following), an exponent, or both. For example, ‘1600.0’, ‘15e2’, ‘15.0e2’, ‘1.5e3’,
and ‘.15e4’ are five ways of writing a floating point number whose value is 1500. They are all
equivalent. You can also use a minus sign to write negative floating point numbers, as in ‘=1.0".

You can use logb to extract the binary exponent of a floating point number (or estimate the
logarithm of an integer):

logb number Function
This function returns the binary exponent of number. More precisely, the value is the

logarithm of number base 2, rounded down to an integer.

3.3 Type Predicates for Numbers

The functions in this section test whether the argument is a number or whether it is a certain sort
of number. The functions integerp and floatp can take any type of Lisp object as argument (the
predicates would not be of much use otherwise); but the zerop predicate requires a number as its
argument. See also integer-or-marker-p and number-or-marker-p, in Section 28.2 [Predicates
on Markers], page 508.

floatp object Function
This predicate tests whether its argument is a floating point number and returns t if
so, nil otherwise.

floatp does not exist in Emacs versions 18 and earlier.

integerp object Function
This predicate tests whether its argument is an integer, and returns t if so, nil other-
wise.

numberp object Function

This predicate tests whether its argument is a number (either integer or floating point),
and returns t if so, nil otherwise.

46 GNU Emacs Lisp Reference Manual

natnump object Function
The natnump predicate (whose name comes from the phrase “natural-number-p”) tests
to see whether its argument is a nonnegative integer, and returns t if so, nil otherwise.
0 is considered non-negative.

Markers are not converted to integers, hence natnump of a marker is always nil.

People have pointed out that this function is misnamed, because the term “natural
number” is usually understood as excluding zero. We are open to suggestions for a
better name to use in a future version.

zerop number Function
This predicate tests whether its argument is zero, and returns t if so, nil otherwise.
The argument must be a number.

These two forms are equivalent: (zerop x) = (=x 0).

3.4 Comparison of Numbers

Floating point numbers in Emacs Lisp actually take up storage, and there can be many distinct
floating point number objects with the same numeric value. If you use eq to compare them, then
you test whether two values are the same object. If you want to compare just the numeric values,
use =.

If you use eq to compare two integers, it always returns t if they have the same value. This is

sometimes useful, because eq accepts arguments of any type and never causes an error, whereas

signals an error if the arguments are not numbers or markers. However, it is a good idea to use

if you can, even for comparing integers, just in case we change the representation of integers in

o

future Emacs version.

There is another wrinkle: because floating point arithmetic is not exact, it is often a bad idea to
check for equality of two floating point values. Usually it is better to test for approximate equality.
Here’s a function to do this:

(defvar fuzz-factor 1.0e-6)

Chapter 3: Numbers

(defun approx-equal (x y)
(< (/ (abs (- x y))
(max (abs x) (abs y)))
fuzz-factor))

Common Lisp note: because of the way numbers are implemented in Common Lisp,
you generally need to use ‘=" to test for equality between numbers of any kind.

= number-or-markerl number-or-marker2 Function
This function tests whether its arguments are the same number, and returns t if so,
nil otherwise.

/= number-or-markerl number-or-marker2 Function
This function tests whether its arguments are not the same number, and returns t if
so, nil otherwise.

< number-or-markerl number-or-marker2 Function
This function tests whether its first argument is strictly less than its second argument.
It returns t if so, nil otherwise.

<= number-or-markerl number-or-marker2 Function
This function tests whether its first argument is less than or equal to its second argu-
ment. It returns t if so, nil otherwise.

> number-or-marker1l number-or-marker2 Function
This function tests whether its first argument is strictly greater than its second argu-
ment. It returns t if so, nil otherwise.

= number-or-markerl number-or-marker2 Function
This function tests whether its first argument is greater than or equal to its second
argument. It returns t if so, nil otherwise.

max number-or-marker &rest numbers-or-markers Function
This function returns the largest of its arguments.

(max 20)
= 20

48 GNU Emacs Lisp Reference Manual

(max 1 2)
= 2

(max 1 3 2)
= 3

min number-or-marker &rest numbers-or-markers Function

This function returns the smallest of its arguments.

3.5 Numeric Conversions

To convert an integer to floating point, use the function float.

float number Function
This returns number converted to floating point. If number is already a floating point

number, float returns it unchanged.

There are four functions to convert floating point numbers to integers; they differ in how they
round. You can call these functions with an integer argument also; if you do, they return it without

change.

truncate number Function
This returns number, converted to an integer by rounding towards zero.

floor number Function
This returns number, converted to an integer by rounding downward (towards negative

infinity).

ceiling number Function
This returns number, converted to an integer by rounding upward (towards positive
infinity).

round number Function

This returns number, converted to an integer by rounding towards the nearest integer.

Chapter 3: Numbers 49

3.6 Arithmetic Operations

Emacs Lisp provides the traditional four arithmetic operations: addition, subtraction, multi-
plication, and division. A remainder function supplements the (integer) division function. The
functions to add or subtract 1 are provided because they are traditional in Lisp and commonly

used.
All of these functions except % return a floating point value if any argument is floating.

It is important to note that in GNU Emacs Lisp, arithmetic functions do not check for overflow.
Thus (1+ 8388607) may equal —8388608, depending on your hardware.

1+ number-or-marker Function

This function returns number-or-marker plus 1. For example,

(setq foo 4)
= 4

(1+ foo)
= 5

This function is not analogous to the C operator ++—it does not increment a variable.

It just computes a sum. Thus,

foo
= 4

If you want to increment the variable, you must use setq, like this:

(setq foo (1+ foo))
= 5

1- number-or-marker Function
This function returns number-or-marker minus 1.

abs number Function
This returns the absolute value of number.

50 GNU Emacs Lisp Reference Manual

+ &rest numbers-or-markers Function
This function adds its arguments together. When given no arguments, + returns 0. It

does not check for overflow.

(+)
= 0
(+ 1)
=1
(+1234)
= 10

- &optional number-or-marker &rest other-numbers-or-markers Function
The - function serves two purposes: negation and subtraction. When - has a single
argument, the value is the negative of the argument. When there are multiple ar-
guments, each of the other-numbers-or-markers is subtracted from number-or-marker,
cumulatively. If there are no arguments, the result is 0. This function does not check

for overflow.

(- 1012 3 4)
= 0
(- 10)
= -10
=)
= 0

* &rest numbers-or-markers Function
This function multiplies its arguments together, and returns the product. When given

no arguments, * returns 1. It does not check for overflow.

€]
=1
(x 1)
=1
(* 123 4)
= 24

/ dividend divisor &rest divisors Function
This function divides dividend by divisors and returns the quotient. If there are ad-
ditional arguments divisors, then dividend is divided by each divisor in turn. Each

argument may be a number or a marker.

Chapter 3: Numbers

If all the arguments are integers, then the result is an integer too. This means the
result has to be rounded. On most machines, the result is rounded towards zero after
each division, but some machines may round differently with negative arguments. This
is because the Lisp function / is implemented using the C division operator, which has
the same possibility for machine-dependent rounding. As a practical matter, all known
machines round in the standard fashion.

If you divide by 0, an arith-error error is signaled. (See Section 9.5.3 [Errors],

page 141.)
(/ 6 2)
= 3
(/ 5 2)
= 2
(/ 25 3 2)
= 4
(/ -17 6)
= -2

Since the division operator in Emacs Lisp is implemented using the division operator
in C, the result of dividing negative numbers may in principle vary from machine to
machine, depending on how they round the result. Thus, the result of (/ =17 6) could
be -3 on some machines. In practice, nearly all machines round the quotient towards

0.

% dividend divisor Function
This function returns the value of dividend modulo divisor; in other words, the integer
remainder after division of dividend by divisor. The sign of the result is the sign of
dividend. The sign of divisor is ignored. The arguments must be integers.

For negative arguments, the value is in principle machine-dependent since the quotient
is; but in practice, all known machines behave alike.

An arith-error results if divisor is 0.

% 9 4
=1

(% -9 4)
= -1

% 9 -4
=1

52 GNU Emacs Lisp Reference Manual

Ch -9 -4
= -1

For any two numbers dividend and divisor,

(+ (% dividend divisor)
(x (/ dividend divisor) divisor))

always equals dividend.

3.7 Bitwise Operations on Integers

In a computer, an integer is represented as a binary number, a sequence of bits (digits which
are either zero or one). A bitwise operation acts on the individual bits of such a sequence. For
example, shifting moves the whole sequence left or right one or more places, reproducing the same

pattern “moved over”.

The bitwise operations in Emacs Lisp apply only to integers.

Ish integerl count Function
1sh, which is an abbreviation for logical shift, shifts the bits in integerl to the left
count places, or to the right if count is negative. If count is negative, 1sh shifts zeros
into the most-significant bit, producing a positive result even if integerl is negative.
Contrast this with ash, below.

Thus, the decimal number 5 is the binary number 00000101. Shifted once to the left,
with a zero put in the one’s place, the number becomes 00001010, decimal 10.

Here are two examples of shifting the pattern of bits one place to the left. Since the
contents of the rightmost place has been moved one place to the left, a value has to be
inserted into the rightmost place. With 1sh, a zero is placed into the rightmost place.
(These examples show only the low-order eight bits of the binary pattern; the rest are
all zero.)

Chapter 3: Numbers

(1sh 5 1)
= 10

;3 Decimal 5 becomes decimal 10.
00000101 = 00001010

(1sh 7 1)
= 14

;3 Decimal 7 becomes decimal 14.
00000111 = 00001110

As the examples illustrate, shifting the pattern of bits one place to the left produces a

number that is twice the value of the previous number.

Note, however that functions do not check for overflow, and a returned value may be
negative (and in any case, no more than a 24 bit value) when an integer is sufficiently
left shifted.

For example, left shifting 8,388,607 produces —2:

(1sh 8388607 1) ; left shift
= -2

In binary, in the 24 bit implementation, the numbers looks like this:

;5 Decimal 8,388,607
0111 1111 1111 1111 1111 1111

which becomes the following when left shifted:

;3 Decimal —2
1111 1111 1111 1111 1111 1110

Shifting the pattern of bits two places to the left produces results like this (with 8-bit
binary numbers):

53

54 GNU Emacs Lisp Reference Manual

(1sh 3 2)
= 12

;3 Decimal 3 becomes decimal 12.
00000011 = 00001100

On the other hand, shifting the pattern of bits one place to the right looks like this:

(1sh 6 -1)
= 3

;3 Decimal 6 becomes decimal 3.
00000110 = 00000011

(1sh 5 -1)
= 2

; Decimal 5 becomes decimal 2.

)

00000101 = 00000010

As the example illustrates, shifting the pattern of bits one place to the right divides
the value of the binary number by two, rounding downward.

ash integerl count Function
ash (arithmetic shift) shifts the bits in integerl to the left count places, or to the right

if count is negative.

ash gives the same results as 1sh except when integerl and count are both negative. In
that case, ash puts a one in the leftmost position, while 1sh puts a zero in the leftmost

position.

Thus, with ash, shifting the pattern of bits one place to the right looks like this:

Chapter 3: Numbers

(ash -6 -1)
= -3

;3 Decimal —6

;3 becomes decimal —3.
1111 1111 1111 1111 1111 1010

=
1111 1111 1111 1111 1111 1101

In contrast, shifting the pattern of bits one place to the right with 1sh looks like this:

(1sh -6 -1)
= 8388605

;3 Decimal —6
;3 becomes decimal 8,388,605.

1111 1111 1111 1111 1111 1010

=
0111 1111 1111 1111 1111 1101

In this case, the 1 in the leftmost position is shifted one place to the right, and a zero
is shifted into the leftmost position.

Here are other examples:

; 24-bit binary values
(1sh 5 2) ;5 = 0000 0000 0000 0000 0000 0101
= 20 ;20 = 0000 0000 0000 0000 0001 0100
(ash 5 2)
= 20
(1sh -5 2) ; -5 = 1111 1111 1111 1111 1111 1011
= -20 ; —20 = 1111 1111 1111 1111 1110 1100
(ash -5 2)
= =20
(1sh 5 -2) ;5 = 0000 0000 0000 0000 0000 0101

=1 ; 1 = 0000 0000 0000 0000 0000 0001

56 GNU Emacs Lisp Reference Manual

(ash 5 -2)
=1
(1sh -5 -2) ; -5 = 1111 1111 1111 1111 1111 1011
= 4194302 ; 0011 1111 1111 1111 1111 1110
(ash -5 -2) ; -5 = 1111 1111 1111 1111 1111 1011
= -2 ;-2 = 1111 1111 1111 1111 1111 1110
logand &rest ints-or-markers Function

This function returns the “logical and” of the arguments: the nth bit is set in the result
if, and only if, the nth bit is set in all the arguments. (“Set” means that the value of
the bit is 1 rather than 0.)

For example, using 4-bit binary numbers, the “logical and” of 13 and 12 is 12: 1101
combined with 1100 produces 1100.

In both the binary numbers, the leftmost two bits are set (i.e., they are 1’s), so the
leftmost two bits of the returned value are set. However, for the rightmost two bits,
each is zero in at least one of the arguments, so the rightmost two bits of the returned
value are 0’s.

Therefore,

(logand 13 12)
= 12

If logand is not passed any argument, it returns a value of —1. This number is an
identity element for logand because its binary representation consists entirely of ones.
If logand is passed just one argument, it returns that argument.

; 24-bit binary values

(logand 14 13) ; 14 = 0000 0000 0000 0000 0000 1110
; 13 = 0000 0000 0000 0000 0000 1101

= 12 ; 12 = 0000 0000 0000 0000 0000 1100
(logand 14 13 4) ; 14 = 0000 0000 0000 0000 0000 1110

; 13 = 0000 0000 0000 0000 0000 1101
; 4 = 0000 0000 0000 0000 0000 0100
= 4 ; 4 = 0000 0000 0000 0000 0000 0100

Chapter 3: Numbers

(logand)
= -1 ; -1 = 1111 1111 1111 1111 1111 1111

logior &rest ints-or-markers Function
This function returns the “inclusive or” of its arguments: the nth bit is set in the result
if, and only if, the nth bit is set in at least one of the arguments. If there are no
arguments, the result is zero, which is an identity element for this operation. If logior

is passed just one argument, it returns that argument.

; 24-bit binary values

(logior 12 5) ; 12 = 0000 0000 0000 0000 0000 1100
; 5 = 0000 0000 0000 0000 0000 0101

= 13 ; 13 = 0000 0000 0000 0000 0000 1101
(logior 12 5 7) ; 12 = 0000 0000 0000 0000 0000 1100

; 5 = 0000 0000 0000 0000 0000 0101
;7 = 0000 0000 0000 0000 0000 0111
= 15 ; 15 = 0000 0000 0000 0000 0000 1111

logxor &rest ints-or-markers Function
This function returns the “exclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in an odd number of the arguments. If there are
no arguments, the result is 0. If logxor is passed just one argument, it returns that

argument.
; 24-bit binary values
(logxor 12 5) ; 12 = 0000 0000 0000 0000 0000 1100
;5 = 0000 0000 0000 0000 0000 0101
= 9 ;9 = 0000 0000 0000 0000 0000 1001
(logxor 12 5 7) ; 12 = 0000 0000 0000 0000 0000 1100

;5 = 0000 0000 0000 0000 0000 0101
;7 = 0000 0000 0000 0000 0000 0111
= 14 ; 14 = 0000 0000 0000 0000 0000 1110

58 GNU Emacs Lisp Reference Manual

lognot integer Function
This function returns the logical complement of its argument: the nth bit is one in the
result if, and only if, the nth bit is zero in integer, and vice-versa.

;3 5 = 0000 0000 0000 0000 0000 0101
;3 becomes
;; -6 = 1111 1111 1111 1111 1111 1010

(lognot 5)
= -6

3.8 Transcendental Functions

These mathematical functions are available if floating point is supported. They allow integers

as well as floating point numbers as arguments.

sin arg Function
Ccos arg Function
tan arg Function

These are the ordinary trigonometric functions, with argument measured in radians.

asin arg Function
The value of (asin arg) is a number between — pi / 2 and pi / 2 (inclusive) whose
sine is arg; if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

acos arg Function
The value of (acos arg) is a number between 0 and pi (inclusive) whose cosine is arg;
if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

atan arg Function
The value of (atan arg) is a number between — pi / 2 and pi / 2 (exclusive) whose

tangent is arg.

exp arg Function
This is the exponential function; it returns e to the power arg.

Chapter 3: Numbers

log arg &optional base Function
This function returns the logarithm of arg, with base base. If you don’t specify base,
the base e is used. If arg is negative, the result is a NaN.

log10 arg Function
This function returns the logarithm of arg, with base 10. If arg is negative, the result
is a NaN.

expt xy Function

This function returns x raised to power y.

sqrt arg Function
This returns the square root of arg.

3.9 Random Numbers

In a computer, a series of pseudo-random numbers is generated in a deterministic fashion. The

numbers are not truly random, but they have certain properties that mimic a random series. For

example, all possible values occur equally often in a pseudo-random series.

In Emacs, pseudo-random numbers are generated from a “seed” number. Starting from any

given seed, the random function always generates the same sequence of numbers. Emacs always

starts with the same seed value, so the sequence of values of random is actually the same in each

Emacs run! For example, in one operating system, the first call to (random) after you start Emacs

always returns -1457731, and the second one always returns -7692030. This is helpful for debugging.

If you want truly unpredictable random numbers, execute (random t). This chooses a new seed

based on the current time of day and on Emacs’ process ID number.

random &optional limit Function
This function returns a pseudo-random integer. When called more than once, it returns
a series of pseudo-random integers.

If Iimit is nil, then the value may in principle be any integer. If limit is a positive
integer, the value is chosen to be nonnegative and less than limit (only in Emacs 19).

60

GNU Emacs Lisp Reference Manual

If limit is t, it means to choose a new seed based on the current time of day and on
Emacs’s process ID number.

On some machines, any integer representable in Lisp may be the result of random. On
other machines, the result can never be larger than a certain maximum or less than a
certain (negative) minimum.

Chapter 4: Strings and Characters 61

4 Strings and Characters

A string in Emacs Lisp is an array that contains an ordered sequence of characters. Strings are
used as names of symbols, buffers, and files, to send messages to users, to hold text being copied
between buffers, and for many other purposes. Because strings are so important, many functions
are provided expressly for manipulating them. Emacs Lisp programs use strings more often than
individual characters.

See Section 18.5.11 [Strings of Events], page 309, for special considerations when using strings

of keyboard character events.

4.1 Introduction to Strings and Characters

Strings in Emacs Lisp are arrays that contain an ordered sequence of characters. Characters
are represented in Emacs Lisp as integers; whether an integer was intended as a character or not
is determined only by how it is used. Thus, strings really contain integers.

The length of a string (like any array) is fixed and independent of the string contents, and cannot
be altered. Strings in Lisp are not terminated by a distinguished character code. (By contrast,
strings in C are terminated by a character with ASCII code 0.) This means that any character,

including the null character (ASCII code 0), is a valid element of a string.

Since strings are considered arrays, you can operate on them with the general array functions.
(See Chapter 6 [Sequences Arrays Vectors], page 101.) For example, you can access or change indi-
vidual characters in a string using the functions aref and aset (see Section 6.3 [Array Functions],
page 104).

Each character in a string is stored in a single byte. Therefore, numbers not in the range 0 to
255 are truncated when stored into a string. This means that a string takes up much less memory
than a vector of the same length.

Sometimes key sequences are represented as strings. When a string is a key sequence, string
elements in the range 128 to 255 represent meta characters (which are extremely large integers)
rather than keyboard events in the range 128 to 255.

Strings cannot hold characters that have the hyper, super or alt modifiers; they can hold ASCII
control characters, but no others. They do not distinguish case in ASCII control characters. See

62 GNU Emacs Lisp Reference Manual

Section 2.3.3 [Character Type|, page 20, for more information about representation of meta and

other modifiers for keyboard input characters.

Like a buffer, a string can contain text properties for the characters in it, as well as the characters
themselves. See Section 29.17 [Text Properties|, page 551.

See Chapter 29 [Text], page 517, for information about functions that display strings or copy
them into buffers. See Section 2.3.3 [Character Type|, page 20, and Section 2.3.7 [String Type],
page 27, for information about the syntax of characters and strings.

4.2 The Predicates for Strings

For more information about general sequence and array predicates, see Chapter 6 [Sequences
Arrays Vectors], page 101, and Section 6.2 [Arrays|, page 104.

stringp object Function
This function returns t if object is a string, nil otherwise.

char-or-string-p object Function
This function returns t if object is a string or a character (i.e., an integer), nil other-
wise.

4.3 Creating Strings

The following functions create strings, either from scratch, or by putting strings together, or by

taking them apart.

make-string count character Function
This function returns a string made up of count repetitions of character. If count is

negative, an error is signaled.

(make-string 5 7x)
= "xxxxx"

(make-string 0 7x)
: nn

Chapter 4: Strings and Characters 63

Other functions to compare with this one include char-to-string (see Section 4.5
[String Conversion|, page 67), make-vector (see Section 6.4 [Vectors|, page 106), and
make-1list (see Section 5.5 [Building Lists|, page 82).

substring string start &optional end Function
This function returns a new string which consists of those characters from string in the
range from (and including) the character at the index start up to (but excluding) the

character at the index end. The first character is at index zero.

(substring "abcdefg" 0 3)
= "abc"

Here the index for ‘a’ is 0, the index for ‘b’ is 1, and the index for ‘c’ is 2. Thus, three
letters, ‘abc’, are copied from the full string. The index 3 marks the character position
up to which the substring is copied. The character whose index is 3 is actually the
fourth character in the string.

A negative number counts from the end of the string, so that —1 signifies the index of
the last character of the string. For example:

(substring "abcdefg" -3 -1)
j llef"

In this example, the index for ‘e’ is —3, the index for ‘f’ is —2, and the index for ‘g’ is
—1. Therefore, ‘e’ and ‘£’ are included, and ‘g’ is excluded.

When nil is used as an index, it falls after the last character in the string. Thus:

(substring "abcdefg" -3 nil)
: llefgll

Omitting the argument end is equivalent to specifying nil. It follows that (substring
string 0) returns a copy of all of string.

(substring "abcdefg" 0)
= "abcdefg"

But we recommend copy-sequence for this purpose (see Section 6.1 [Sequence Func-
tions], page 101).

64

GNU Emacs Lisp Reference Manual

A wrong-type-argument error is signaled if either start or end are non-integers. An
args-out-of-range error is signaled if start indicates a character following end, or if

either integer is out of range for string.

Contrast this function with buffer-substring (see Section 29.2 [Buffer Contents],
page 519), which returns a string containing a portion of the text in the current buffer.
The beginning of a string is at index 0, but the beginning of a buffer is at index 1.

concat &rest sequences Function

This function returns a new string consisting of the characters in the arguments passed
to it. The arguments may be strings, lists of numbers, or vectors of numbers; they are
not themselves changed. If no arguments are passed to concat, it returns an empty

string.

(concat "abc" "-def")
= "abc-def"

(concat "abc" (list 120 (+ 256 121)) [122])
= "abcxyz"

(concat "The " "quick brown " "fox.")
= "The quick brown fox."

(concat)
j nn

The second example above shows how characters stored in strings are taken modulo
256. In other words, each character in the string is stored in one byte.

The concat function always constructs a new string that is not eq to any existing
string.

When an argument is an integer (not a sequence of integers), it is converted to a string
of digits making up the decimal printed representation of the integer. This special case
exists for compatibility with Mocklisp, and we don’t recommend you take advantage of
it. If you want to convert an integer in this way, use format (see Section 4.6 [Formatting
Strings], page 68) or int-to-string (see Section 4.5 [String Conversion|, page 67).

(concat 137)
= 137"
(concat 54 321)
= "54321"

Chapter 4: Strings and Characters 65

For information about other concatenation functions, see the description of mapconcat
in Section 11.6 [Mapping Functions|, page 183, vconcat in Section 6.4 [Vectors],
page 106, and append in Section 5.5 [Building Lists], page 82.

4.4 Comparison of Characters and Strings

char-equal characterl character2 Function
This function returns t if the arguments represent the same character, nil otherwise.

This function ignores differences in case if case-fold-search is non-nil.

(char-equal 7x 7x)
=t

(char-to-string (+ 256 ?7x))
j "X"

(char-equal 7x (+ 256 7x))
=t

string= stringl string2 Function
This function returns t if the characters of the two strings match exactly; case is

significant.

(string= "abc" "abc")
=t

(string= "abc" "ABC")
= nil

(string= "ab" "ABC")
= nil

string-equal stringl string?2 Function
string-equal is another name for string=.

string< stringl string2 Function
This function compares two strings a character at a time. First it scans both the
strings at once to find the first pair of corresponding characters that do not match. If
the lesser character of those two is the character from stringl, then stringl is less, and
this function returns t. If the lesser character is the one from string2, then stringl is
greater, and this function returns nil. If the two strings match entirely, the value is

nil.

66 GNU Emacs Lisp Reference Manual

Pairs of characters are compared by their ASCII codes. Keep in mind that lower case
letters have higher numeric values in the ASCII character set than their upper case
counterparts; numbers and many punctuation characters have a lower numeric value
than upper case letters.

(string< "abc" "abd")

=t

(string< "abd" "abc")
= nil

(string< "123" "abc")
=t

When the strings have different lengths, and they match up to the length of stringl,
then the result is t. If they match up to the length of string2, the result is nil. A
string without any characters in it is the smallest possible string.

(string< "" "abc")
=t

(string< "ab" "abc")
=t

(string< "abc" "")
= nil

(string< "abc" "ab")
= nil

(string< "" "")
= nil

string-lessp stringl string2 Function

string-lessp is another name for string<.

See compare-buffer-substrings in Section 29.3 [Comparing Text|, page 520, for a way to
compare text in buffers.

4.5 Conversion of Characters and Strings

Characters and strings may be converted into each other and into integers. format and prinl-
to-string (see Section 16.5 [Output Functions|, page 258) may also be used to convert Lisp

Chapter 4: Strings and Characters 67

objects into strings. read-from-string (see Section 16.3 [Input Functions], page 254) may be

used to “convert” a string representation of a Lisp object into an object.

See Chapter 21 [Documentation], page 375, for a description of functions which return a string
representing the Emacs standard notation of the argument character (single-key-description
and text-char-description). These functions are used primarily for printing help messages.

char-to-string character Function
This function returns a new string with a length of one character. The value of char-

acter, modulo 256, is used to initialize the element of the string.

This function is similar to make-string with an integer argument of 1. (See Section 4.3
[Creating Strings|, page 62.) This conversion can also be done with format using the
‘“%c’ format specification. (See Section 4.6 [Formatting Strings], page 68.)

(char-to-string 7x)
j "X"

(char-to-string (+ 256 7x))
: IIXII

(make-string 1 7x)
j "X"

string-to-char string Function
This function returns the first character in string. If the string is empty, the function
returns 0. The value is also 0 when the first character of string is the null character,
ASCII code 0.

(string-to-char "ABC")
= 65

(string-to-char "xyz")
= 120

(string-to-char "")
=0

(string-to-char "\000")
=0

This function may be eliminated in the future if it does not seem useful enough to

retain.

68 GNU Emacs Lisp Reference Manual

number-to-string number Function

int-to-string number Function
This function returns a string consisting of the printed representation of number, which
may be an integer or a floating point number. The value starts with a sign if the

argument is negative.

(int-to-string 256)

= "256"

(int-to-string -23)
= n_o3mn

(int-to-string -23.5)
= "-23.5"

See also the function format in Section 4.6 [Formatting Strings|, page 68.

string-to-number string Function
string-to-int string Function
This function returns the integer value of the characters in string, read as a number
in base ten. It skips spaces at the beginning of string, then reads as much of string
as it can interpret as a number. (On some systems it ignores other whitespace at the
beginning, not just spaces.) If the first character after the ignored whitespace is not a
digit or a minus sign, this function returns 0.

(string-to-number "256")
= 256
(string-to-number "25 is a perfect square.")
= 25
(string-to-number "X256")
= 0
(string-to-number "-4.5")
= -4.5

4.6 Formatting Strings

Formatting means constructing a string by substitution of computed values at various places
in a constant string. This string controls how the other values are printed as well as where they
appear; it is called a format string.

Chapter 4: Strings and Characters 69

Formatting is often useful for computing messages to be displayed. In fact, the functions message
and error provide the same formatting feature described here; they differ from format only in how
they use the result of formatting.

format string &rest objects Function
This function returns a new string that is made by copying string and then replacing
any format specification in the copy with encodings of the corresponding objects. The

arguments objects are the computed values to be formatted.

A format specification is a sequence of characters beginning with a ‘%’. Thus, if there is a ‘%d’
in string, the format function replaces it with the printed representation of one of the values to be
formatted (one of the arguments objects). For example:

(format "The value of fill-column is %d." fill-column)
= "The value of fill-column is 72."

If string contains more than one format specification, the format specifications are matched
with successive values from objects. Thus, the first format specification in string is matched with
the first such value, the second format specification is matched with the second such value, and
so on. Any extra format specifications (those for which there are no corresponding values) cause
unpredictable behavior. Any extra values to be formatted will be ignored.

Certain format specifications require values of particular types. However, no error is signaled
if the value actually supplied fails to have the expected type. Instead, the output is likely to be
meaningless.

Here is a table of the characters that can follow ‘%’ to make up a format specification:

‘s’ Replace the specification with the printed representation of the object, made without
quoting. Thus, strings are represented by their contents alone, with no ‘"’ characters,
and symbols appear without ‘\’ characters.

If there is no corresponding object, the empty string is used.
‘s’ Replace the specification with the printed representation of the object, made with

quoting. Thus, strings are enclosed in ‘"’ characters, and ‘\’ characters appear where
necessary before special characters.

If there is no corresponding object, the empty string is used.

o) Replace the specification with the base-eight representation of an integer.

70

(%7

acter.

GNU Emacs Lisp Reference Manual

Replace the specification with the base-ten representation of an integer.

Replace the specification with the base-sixteen representation of an integer.

Replace the specification with the character which is the value given.

Replace the specification with the exponential notation for a floating point number.

Replace the specification with the decimal-point notation for a floating point number.

Replace the specification with notation for a floating point number, using either expo-

nential notation or decimal-point notation whichever is shorter.

A single ‘%’ is placed in the string. This format specification is unusual in that it does

not use a value. For example, (format "%% %d" 30) returns "% 30".

Any other format character results in an ‘Invalid format operation’ error.

Here are several examples:

(format "The
= "The

(format "The
= "The

(format "The
and

= "The

and

name of this buffer is %s." (buffer-name))
name of this buffer is strings.texi."

buffer object prints as ¥%s." (current-buffer))

buffer object prints as #<buffer strings.texi>."

octal value of 18 is %o,

the hex value is %x." 18 18)
octal value of 18 is 22,

the hex value is 12."

All the specification characters allow an optional numeric prefix between the ‘%’ and the char-

The optional numeric prefix defines the minimum width for the object. If the printed

representation of the object contains fewer characters than this, then it is padded. The padding is

on the left if the prefix is positive (or starts with zero) and on the right if the prefix is negative.

The padding character is normally a space, but if the numeric prefix starts with a zero, zeros are

used for padding.

(format "%06d will be padded on the left with zeros" 123)
= "000123 will be padded on the left with zeros"

(format "%-6d will be padded on the right" 123)

= "123

will be padded on the right"

Chapter 4: Strings and Characters 71

format never truncates an object’s printed representation, no matter what width you specify.
Thus, you can use a numeric prefix to specify a minimum spacing between columns with no risk of

losing information.

In the following three examples, ‘%7s’ specifies a minimum width of 7. In the first case, the
string inserted in place of ‘%7s’ has only 3 letters, so 4 blank spaces are inserted for padding. In
the second case, the string "specification" is 13 letters wide but is not truncated. In the third

case, the padding is on the right.

(format "The word ‘J%7s’ actually has Jd letters in it." "foo"
(length "foo"))
= "The word ° foo’ actually has 3 letters in it."
(format "The word ‘%7s’ actually has J%d letters in it."
"specification"
(length "specification"))
= "The word ‘specification’ actually has 13 letters in it."

(format "The word ‘%-7s’ actually has %d letters in it." "foo"
(length "foo"))
= "The word ‘foo > actually has 3 letters in it."

4.7 Character Case

The character case functions change the case of single characters or of the contents of strings.
The functions convert only alphabetic characters (the letters ‘A’ through ‘Z’ and ‘a’ through ‘z’);
other characters are not altered. The functions do not modify the strings that are passed to them

as arguments.

The examples below use the characters ‘X’ and ‘x” which have ASCII codes 88 and 120 respec-
tively.

downcase string-or-char Function

This function converts a character or a string to lower case.

When the argument to downcase is a string, the function creates and returns a new
string in which each letter in the argument that is upper case is converted to lower case.
When the argument to downcase is a character, downcase returns the corresponding

72 GNU Emacs Lisp Reference Manual

lower case character. This value is an integer. If the original character is lower case, or

is not a letter, then the value equals the original character.

(downcase "The cat in the hat")
= "the cat in the hat"

(downcase ?7X)
= 120

upcase string-or-char Function
This function converts a character or a string to upper case.

When the argument to upcase is a string, the function creates and returns a new string
in which each letter in the argument that is lower case is converted to upper case.

When the argument to upcase is a character, upcase returns the corresponding upper
case character. This value is an integer. If the original character is upper case, or is

not a letter, then the value equals the original character.

(upcase "The cat in the hat")
= "THE CAT IN THE HAT"

(upcase 7x)
= 88

capitalize string-or-char Function
This function capitalizes strings or characters. If string-or-char is a string, the function
creates and returns a new string, whose contents are a copy of string-or-char in which
each word has been capitalized. This means that the first character of each word is
converted to upper case, and the rest are converted to lower case.

The definition of a word is any sequence of consecutive characters that are assigned to
the word constituent category in the current syntax table (See Section 31.1.1 [Syntax
Class Table], page 584).

When the argument to capitalize is a character, capitalize has the same result as

upcase.

(capitalize "The cat in the hat")
= "The Cat In The Hat"

Chapter 4: Strings and Characters 73

(capitalize "THE 77TH-HATTED CAT")
= "The 77th-Hatted Cat"

(capitalize 7x)
= 88

4.8 The Case Table

You can customize case conversion by installing a special case table. A case table specifies
the mapping between upper case and lower case letters. It affects both the string and character
case conversion functions (see the previous section) and those that apply to text in the buffer (see
Section 29.16 [Case Changes], page 549). Use case table if you are using a language which has
letters that are not the standard ASCII letters.

A case table is a list of this form:

(downcase upcase canonicalize equivalences)

where each element is either nil or a string of length 256. The element downcase says how to
map each character to its lower-case equivalent. The element upcase maps each character to its
upper-case equivalent. If lower and upper case characters are in one-to-one correspondence, use

nil for upcase; then Emacs deduces the upcase table from downcase.

For some languages, upper and lower case letters are not in one-to-one correspondence. There
may be two different lower case letters with the same upper case equivalent. In these cases, you
need to specify the maps for both directions.

The element canonicalize maps each character to a canonical equivalent; any two characters
that are related by case-conversion have the same canonical equivalent character.

The element equivalences is a map that cyclicly permutes each equivalence class (of characters
with the same canonical equivalent). (For ordinary ASCII, this would map ‘a’ into ‘A’ and ‘A’ into
‘a’, and likewise for each set of equivalent characters.)

You can provide nil for both canonicalize and equivalences, in which case both are deduced
from downcase and upcase. Normally, that’s what you should do, when you construct a case table.
But when you look at the case table that’s in use, you will find non-nil values for those components.

74 GNU Emacs Lisp Reference Manual

Each buffer has a case table. Emacs also has a standard case table which is copied into each
buffer when you create the buffer. (Changing the standard case table doesn’t affect any existing
buffers.)

Here are the functions for working with case tables:

case-table-p object Function
This predicate returns non-nil if object is a valid case table.

set-standard-case-table table Function
This function makes table the standard case table, so that it will apply to any buffers
created subsequently.

standard-case-table Function
This returns the standard case table.

current-case-table Function

This function returns the current buffer’s case table.

set-case-table table Function
This sets the current buffer’s case table to table.

The following three functions are convenient subroutines for packages that define non-ASCII
character sets. They modify a string downcase-table provided as an argument; this should be a
string to be used as the downcase part of a case table. They also modify two syntax tables, the
standard syntax table and the Text mode syntax table. (See Chapter 31 [Syntax Tables|, page 583.)

set-case-syntax-pair uc Ic downcase-table Function
This function specifies a pair of corresponding letters, one upper case and one lower
case.

set-case-syntax-delims | r downcase-table Function
This function makes characters I and r a matching pair of case-invariant delimiters.

set-case-syntax char syntax downcase-table Function
This function makes char case-invariant, with syntax syntax.

Chapter 4: Strings and Characters 75

describe-buffer-case-table Command

This command displays a description of the contents of the current buffer’s case table.

You can load the library ‘iso-syntax’ to set up the syntax and case table for the 256 bit ISO
Latin 1 character set.

76

GNU Emacs Lisp Reference Manual

Chapter 5: Lists 77

5 Lists

A list represents a sequence of zero or more elements (which may be any Lisp objects). The
important difference between lists and vectors is that two or more lists can share part of their
structure; in addition, you can insert or delete elements in a list without copying the whole list.

5.1 Lists and Cons Cells

Lists in Lisp are not a primitive data type; they are built up from cons cells. A cons cell is a
data object which represents an ordered pair. It records two Lisp objects, one labeled as the CAR,
and the other labeled as the CDR. (These names are traditional.)

A list is made by chaining cons cells together, one cons cell per element. By convention, the
CARs of the cons cells are the elements of the list, and the CDRs are used to chain the list: the CDR
of each cons cell is the following cons cell. The CDR of the last cons cell is nil. This asymmetry
between the CAR and the CDR is entirely a matter of convention; at the level of cons cells, the CAR
and CDR slots have the same characteristics.

The symbol nil is considered a list as well as a symbol; it is the list with no elements. For
convenience, the symbol nil is considered to have nil as its CDR (and also as its CAR).

The CDR of any nonempty list I is a list containing all the elements of I except the first.

5.2 Lists as Linked Pairs of Boxes

A cons cell can be illustrated as a pair of boxes. The first box represents the CAR and the second
box represents the CDR. Here is an illustration of the two-element list, (tulip 1ily), made from

two cons cells:

78 GNU Emacs Lisp Reference Manual

Each pair of boxes represents a cons cell. Each box “refers to”, “points to” or “contains” a
Lisp object. (These terms are synonymous.) The first box, which is the CAR of the first cons cell,
contains the symbol tulip. The arrow from the CDR of the first cons cell to the second cons cell
indicates that the CDR of the first cons cell points to the second cons cell.

The same list can be illustrated in a different sort of box notation like this:

--> tulip --> 1lily

Here is a more complex illustration, this time of the three-element list, ((pine needles) oak
maple), the first element of which is a two-element list:

|___l___1==> ___l___l--> |___l___l-->nil
| | |
| | |
| --> oak --> maple
|
| - ___ . ___
-—> | ___I___1-->l___l___l--> nil
| |
| |
--> pine —--> needles

The same list is represented in the first box notation like this:

Chapter 5: Lists 79

car	cdr		car	cdr		car	cdr	
l o	o————- >l cak	o-——--—- >	maple	nil				
e | mmmmmmmmm

|

|

| e

I | car | cdr | | car | cdr |

______ >| pine | o------->| needles | nil |

See Section 2.3.5 [List Type], page 23, for the read and print syntax of lists, and for more “box

and arrow” illustrations of lists.

5.3 Predicates on Lists

The following predicates test whether a Lisp object is an atom, is a cons cell or is a list, or
whether it is the distinguished object nil. (Many of these tests can be defined in terms of the
others, but they are used so often that it is worth having all of them.)

consp object Function
This function returns t if object is a cons cell, nil otherwise. nil is not a cons cell,

although it is a list.

atom object Function
This function returns t if object is an atom, nil otherwise. All objects except cons
cells are atoms. The symbol nil is an atom and is also a list; it is the only Lisp object

which is both.

(atom object) = (not (consp object))

listp object Function
This function returns t if object is a cons cell or nil. Otherwise, it returns nil.

80 GNU Emacs Lisp Reference Manual

(listp ’ (1))

=t
(1istp > O)
= t
nlistp object Function

This function is the opposite of 1istp: it returns t if object is not a list. Otherwise, it
returns nil.

(listp object) = (not (nlistp object))

null object Function
This function returns t if object is nil, and returns nil otherwise. This function is
identical to not, but as a matter of clarity we use null when object is considered a
list and not when it is considered a truth value (see not in Section 9.3 [Combining

Conditions], page 135).

(null (1))
= nil

(null *O))
=t

5.4 Accessing Elements of Lists

car cons-cell Function
This function returns the value pointed to by the first pointer of the cons cell cons-cell.
Expressed another way, this function returns the CAR of cons-cell.

As a special case, if cons-cell is nil, then car is defined to return nil; therefore, any
list is a valid argument for car. An error is signaled if the argument is not a cons cell

or nil.

(car ’(a b ¢))
= a
(car ()
= nil

Chapter 5: Lists

cdr cons-cell Function
This function returns the value pointed to by the second pointer of the cons cell cons-

cell. Expressed another way, this function returns the CDR of cons-cell.

As a special case, if cons-cell is nil, then cdr is defined to return nil; therefore, any
list is a valid argument for cdr. An error is signaled if the argument is not a cons cell

or nil.

(cdr ’(a b ¢))
= (b c)
(cdr Q)
= nil

car-safe object Function
This function lets you take the CAR of a cons cell while avoiding errors for other data
types. It returns the CAR of object if object is a cons cell, nil otherwise. This is in

contrast to car, which signals an error if object is not a list.

(car-safe object)

(let ((x object))
(if (consp x)
(car x)
nil))

cdr-safe object Function
This function lets you take the CDR of a cons cell while avoiding errors for other data
types. It returns the CDR of object if object is a cons cell, nil otherwise. This is in

contrast to cdr, which signals an error if object is not a list.

(cdr-safe object)

(let ((x object))
(if (consp x)
(cdr x)
nil))

81

82 GNU Emacs Lisp Reference Manual

nth n list Function
This function returns the nth element of list. Elements are numbered starting with
zero, so the CAR of list is element number zero. If the length of list is n or less, the
value is nil.

If n is less than zero, then the first element is returned.

(nth 2 ’(1 2 3 4))

= 3
(nth 10 °(1 2 3 4))
= nil
(nth -3 °(1 2 3 4))
= 1
(nth n x) = (car (nthcdr n x))
nthedr n list Function

This function returns the nth cdr of list. In other words, it removes the first n links of

list and returns what follows.

If n is less than or equal to zero, then all of list is returned. If the length of Iist is n or
less, the value is nil.

(nthcdr 1 (1 2 3 4))
= (2 3 4)

(nthcdr 10 °(1 2 3 4))
= nil

(nthcdr -3 °(1 2 3 4))
= (123 4)

5.5 Building Cons Cells and Lists

Many functions build lists, as lists reside at the very heart of Lisp. cons is the fundamental
list-building function; however, it is interesting to note that 1ist is used more times in the source

code for Emacs than cons.

Chapter 5: Lists 83

cons objectl object2 Function
This function is the fundamental function used to build new list structure. It creates
a new cons cell, making objectl the CAR, and object2 the CDR. It then returns the
new cons cell. The arguments objectl and object2 may be any Lisp objects, but most
often object?2 is a list.

(cons 1 ’(2))

= (12
(cons 1 °())

= (1)
(cons 1 2)

= (1.2

cons is often used to add a single element to the front of a list. This is called consing
the element onto the list. For example:

(setq list (cons newelt list))

Note that there is no conflict between the variable named list used in this example
and the function named list described below; any symbol can serve both functions.

list &rest objects Function
This function creates a list with objects as its elements. The resulting list is always
nil-terminated. If no objects are given, the empty list is returned.

(list 1 2 3 4 5)
= (1 2345)
(l1ist 1 2 ’(3 4 5) ’foo)
= (1 2 (3 4 5) foo)
(1list)
= nil

make-list length object Function
This function creates a list of length length, in which all the elements have the iden-
tical value object. Compare make-list with make-string (see Section 4.3 [Creating
Strings], page 62).

84 GNU Emacs Lisp Reference Manual

(make-list 3 ’pigs)

= (pigs pigs pigs)
(make-1list 0 ’pigs)

= nil

append &rest sequences Function
This function returns a list containing all the elements of sequences. The sequences

may be lists, vectors, strings, or integers. All arguments except the last one are copied,

so none of them are altered.

The final argument to append may be any object but it is typically a list. The final
argument is not copied or converted; it becomes part of the structure of the new list.

Here is an example:

(setq trees ’(pine oak))
= (pine oak)

(setq more-trees (append ’(maple birch) trees))
= (maple birch pine oak)

trees
= (pine oak)
more-trees
= (maple birch pine oak)
(eq trees (cdr (cdr more-trees)))
=t

You can see what happens by looking at a box diagram. The variable trees is set to
the list (pine oak) and then the variable more-trees is set to the list (maple birch
pine oak). However, the variable trees continues to refer to the original list:

more-trees trees

--> maple -->birch --> pine --> oak

Chapter 5: Lists 85

An empty sequence contributes nothing to the value returned by append. As a conse-

quence of this, a final nil argument forces a copy of the previous argument.

trees
= (pine oak)
(setq wood (append trees ()))
= (pine oak)
wood
= (pine oak)
(eq wood trees)
= nil

This once was the standard way to copy a list, before the function copy-sequence was
invented. See Chapter 6 [Sequences Arrays Vectors], page 101.

With the help of apply, we can append all the lists in a list of lists:

(apply ’append ’((a b ¢) nil (x y z) nil))
= (abcxyz)

If no sequences are given, nil is returned:

(append)
= nil

In the special case where one of the sequences is an integer (not a sequence of integers),
it is first converted to a string of digits making up the decimal print representation of
the integer. This special case exists for compatibility with Mocklisp, and we don’t
recommend you take advantage of it. If you want to convert an integer in this way,
use format (see Section 4.6 [Formatting Strings|, page 68) or number-to-string (see
Section 4.5 [String Conversion], page 67).

(setq trees ’(pine oak))
= (pine oak)

(char-to-string 54)
= "g"

(setq longer-list (append trees 6 ’(spruce)))
= (pine oak 54 spruce)

86 GNU Emacs Lisp Reference Manual

(setq x-1list (append trees 6 6))
= (pine oak 54 . 6)

See nconc in Section 5.6.3 [Rearrangement]|, page 90, for another way to join lists

without copying.

reverse list Function
This function creates a new list whose elements are the elements of Iist, but in reverse

order. The original argument list is not altered.

(setq x ’(1 2 3 4))

= (1 23 4)
(reverse x)

= (4321)
X

= (1 23 4)

5.6 Modifying Existing List Structure

You can modify the CAR and CDR contents of a cons cell with the primitives setcar and setcdr.

Common Lisp note: Common Lisp uses functions rplaca and rplacd to alter list
structure; they change structure the same way as setcar and setcdr, but the Common
Lisp functions return the cons cell while setcar and setcdr return the new CAR or

CDR.

5.6.1 Altering List Elements with setcar

Changing the CAR of a cons cell is done with setcar and replaces one element of a list with a

different element.

setcar cons object Function

This function stores object as the new CAR of cons, replacing its previous CAR. It

returns the value object. For example:

(setq x ’(1 2))
= (12

Chapter 5: Lists 87

(setcar x ’4)
= 4

= (4 2)

When a cons cell is part of the shared structure of several lists, storing a new CAR into the cons

changes one element of each of these lists. Here is an example:

;3 Create two lists that are partly shared.
(setq x1 (a b ¢))
= (a b o)
(setq x2 (cons ’z (cdr x1)))
= (z b ¢)
;5 Replace the CAR of a shared link.
(setcar (cdr x1) ’foo)
= foo
x1 ; Both lists are changed.
= (a foo c)
x2
= (z foo c)
;5 Replace the CAR of a link that is not shared.
(setcar x1 ’baz)
= baz
x1 ; Only one list is changed.
= (baz foo c)
x2
= (z foo c)

Here is a graphical depiction of the shared structure of the two lists xI and x2, showing why

replacing b changes them both:

88 GNU Emacs Lisp Reference Manual

x1:
| car | cdr | | car | cdr | | car | cdr |
Il a | o-——————- > b | o————-—- > ¢ | nil |
[| [——>] | | | | |
______________ | e e
|
x2: |
______________ |
| car | cdr | |
Iz | o

5.6.2 Altering the CDR of a List

The lowest-level primitive for modifying a CDR is setcdr:

setcdr cons object Function

This function stores object into the cdr of cons. The value returned is object, not cons.

Chapter 5: Lists 89

Here is an example of replacing the CDR of a list with a different list. All but the first element
of the list are removed in favor of a different sequence of elements. The first element is unchanged,

because it resides in the CAR of the list, and is not reached via the CDR.

(setq x ’(1 2 3))

= (123)
(setcdr x ’(4))
= (4)

x
= (1 4)

You can delete elements from the middle of a list by altering the CDRs of the cons cells in the
list. For example, here we delete the second element, b, from the list (a b ¢), by changing the CDR
of the first cell:

(setq x1 ’(a b c))

= (a b c)

(setcdr x1 (cdr (cdr x1)))
= (¢)

x1
= (a c¢)

Here is the result in box notation:

| a | o————- | b | o———————- > | c | nil |

The second cons cell, which previously held the element b, still exists and its CAR is still b, but it
no longer forms part of this list.

It is equally easy to insert a new element by changing CDRs:

90 GNU Emacs Lisp Reference Manual

(setq x1 ’(a b c))

= (a b c)

(setcdr x1 (cons ’d (cdr x1)))
= (d b <)

x1
= (adbc)

Here is this result in box notation:

car	cdr		car	cdr		car	cdr
a	o [-=>	b	o——===== >	c	nil		
		(.					
_________	-	S S					

| |

| |

| | car | cdr |

-—>| 4 | o------

5.6.3 Functions that Rearrange Lists

Here are some functions that rearrange lists “destructively” by modifying the CDRs of their
component cons cells. We call these functions “destructive” because the original lists passed as

arguments to them are chewed up to produce a new list that is subsequently returned.

nconc &rest lists Function

This function returns a list containing all the elements of lists. Unlike append (see
Section 5.5 [Building Lists], page 82), the lists are not copied. Instead, the last CDR
of each of the lists is changed to refer to the following list. The last of the lists is not

altered. For example:

(setq x ’(1 2 3))
= (12 3)

Chapter 5: Lists 91

(nconc x (4 5))
= (1 2345)

= (1 2345)

Since the last argument of nconc is not itself modified, it is reasonable to use a constant
list, such as > (4 5), as is done in the above example. For the same reason, the last
argument need not be a list:

(setq x ’(1 2 3))
= (1 23)
(nconc x ’z)
= (123 . z)

= (123.2)

A common pitfall is to use a quoted constant list as a non-last argument to nconc. If
you do this, your program will change each time you run it! Here is what happens:

(defun add-foo (x) ; This function should add
(nconc ’(foo) x)) ; foo to the front of its arg.

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo0)) x))

(setq xx (add-foo (1 2))) ; It seems to work.
= (foo 1 2)

(setq xy (add-foo ’(3 4))) ; What happened?
= (foo 1 2 3 4)

(eq xx xV)
=t

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo 1 2 3 4) x)))

nreverse list Function
This function reverses the order of the elements of list. Unlike reverse, nreverse
alters its argument destructively by reversing the CDRs in the cons cells forming the
list. The cons cell which used to be the last one in list becomes the first cell of the

value.

For example:

92 GNU Emacs Lisp Reference Manual

(setq x (1 2 3 4))

= (123 4)
X
= (123 4)
(nreverse x)
= (4321)
;3 The cell that was first is now last.
X

= (D

To avoid confusion, we usually store the result of nreverse back in the same variable

which held the original list:

(setq x (nreverse x))

Here is the nreverse of our favorite example, (a b c¢), presented graphically:

Original list head: Reversed list:
| car | cdr | | car | cdr | | car | cdr |
| a | nil |<-- | b | o |<-- | c | o |

sort list predicate Function

This function sorts list stably, though destructively, and returns the sorted list. It
compares elements using predicate. A stable sort is one in which elements with equal
sort keys maintain their relative order before and after the sort. Stability is important
when successive sorts are used to order elements according to different criteria.

The argument predicate must be a function that accepts two arguments. It is called
with two elements of list. To get an increasing order sort, the predicate should return

t if the first element is “less than” the second, or nil if not.

The destructive aspect of sort is that it rearranges the cons cells forming list by

changing CcDRs. A nondestructive sort function would create new cons cells to store

Chapter 5: Lists 93

the elements in their sorted order. If you wish to sort a list without destroying the

original, copy it first with copy-sequence.

The CARs of the cons cells are not changed; the cons cell that originally contained the
element a in list still has a in its CAR after sorting, but it now appears in a different
position in the list due to the change of CDRs. For example:

(setq nums (1 3 2 6 5 4 0))

= (1326540)
(sort nums °’<)

= (012345 6)
nums

= (12345 6)

Note that the list in nums no longer contains 0; this is the same cons cell that it was
before, but it is no longer the first one in the list. Don’t assume a variable that formerly
held the argument now holds the entire sorted list! Instead, save the result of sort and
use that. Most often we store the result back into the variable that held the original
list:

(setq nums (sort nums ’<))

See Section 29.13 [Sorting], page 538, for more functions that perform sorting. See
documentation in Section 21.2 [Accessing Documentation|, page 376, for a useful ex-
ample of sort.

The function delq in the following section is another example of destructive list manipulation.

5.7 Using Lists as Sets

A list can represent an unordered mathematical set—simply consider a value an element of a set
if it appears in the list, and ignore the order of the list. To form the union of two sets, use append
(as long as you don’t mind having duplicate elements). Other useful functions for sets include memq

and delq, and their equal versions, member and delete.

Common Lisp note: Common Lisp has functions union (which avoids duplicate el-
ements) and intersection for set operations, but GNU Emacs Lisp does not have
them. You can write them in Lisp if you wish.

94 GNU Emacs Lisp Reference Manual

memq object list Function
This function tests to see whether object is a member of list. If it is, memq returns a
list starting with the first occurrence of object. Otherwise, it returns nil. The letter
‘q’ in memq says that it uses eq to compare object against the elements of the list. For

example:

(memg 2 ’(1 2 3 2 1))

= (2321)
(memg ’(2) ’((1) (2))) ; (2) and (2) are not eq.
= nil
delq object list Function

This function removes all elements eq to object from list. The letter ‘q’ in delq says
that it uses eq to compare object against the elements of the list, like memq.

When delq deletes elements from the front of the list, it does so simply by advancing down the
list and returning a sublist that starts after those elements:

(delq ’a ’(a b c))

(cdr ’(a b ¢))

When an element to be deleted appears in the middle of the list, removing it involves changing
the CDRs (see Section 5.6.2 [Setcdr], page 88).

(setq sample-list ’(1 2 3 (4)))
= (123 (4)
(delq 1 sample-list)
= (2 3 (4))
sample-list
= (123 (4)
(delq 2 sample-list)
= (13 (4)
sample-list
= (13 (4)

Note that (delq 2 sample-list) modifies sample-1ist to splice out the second element, but
(delq 1 sample-1list) does not splice anything—it just returns a shorter list. Don’t assume that
a variable which formerly held the argument list now has fewer elements, or that it still holds the

Chapter 5: Lists 95

original list! Instead, save the result of delq and use that. Most often we store the result back into
the variable that held the original list:

(setq flowers (delq ’rose flowers))

In the following example, the (4) that delq attempts to match and the (4) in the sample-list
are not eq:

(delq ’(4) sample-list)
= (1 3 (4))

The following two functions are like memq and delq but use equal rather than eq to compare

elements. They are new in Emacs 19.

member object list Function
The function member tests to see whether object is a member of list, comparing members
with object using equal. If object is a member, memq returns a list starting with its

first occurrence in list. Otherwise, it returns nil.

Compare this with memgq:

(member °(2) *((1) (2))) ; (2) and (2) are equal.
= ((2))

(memq ’(2) > ((1) (2))) ; (2) and (2) are not eq.
= nil

;3 Two strings with the same contents are equal.

(member "foo" ’("foo" "bar"))
= ("foo" "bar")

delete object list Function
This function removes all elements equal to object from list. It is to delq as member
is to memq: it uses equal to compare elements with object, like member; when it finds

an element that matches, it removes the element just as delq would. For example:

(delete ’(2) ’((2) (1) (2)))
= 2 (1))

96 GNU Emacs Lisp Reference Manual

Common Lisp note: The functions member and delete in GNU Emacs Lisp are derived
from Maclisp, not Common Lisp. The Common Lisp versions do not use equal to
compare elements.

5.8 Association Lists

An association list, or alist for short, records a mapping from keys to values. It is a list of cons
cells called associations: the CAR of each cell is the key, and the CDR is the associated value. (This
usage of “key” is not related to the term “key sequence”; it means any object which can be looked
up in a table.)

Here is an example of an alist. The key pine is associated with the value cones; the key oak is
associated with acorns; and the key maple is associated with seeds.

> ((pine . cones)
(oak . acorns)
(maple . seeds))

The associated values in an alist may be any Lisp objects; so may the keys. For example, in the
following alist, the symbol a is associated with the number 1, and the string "b" is associated with
the list (2 3), which is the CDR of the alist element:

((a . 1) ("p" 2 3))

Sometimes it is better to design an alist to store the associated value in the CAR of the CDR of
the element. Here is an example:

>((rose red) (lily white) (buttercup yellow)))

Here we regard red as the value associated with rose. One advantage of this method is that
you can store other related information—even a list of other items—in the CDR of the CDR. One
disadvantage is that you cannot use rassq (see below) to find the element containing a given value.
When neither of these considerations is important, the choice is a matter of taste, as long as you
are consistent about it for any given alist.

Note that the same alist shown above could be regarded as having the associated value in the
CDR of the element; the value associated with rose would be the list (red).

Chapter 5: Lists 97

Association lists are often used to record information that you might otherwise keep on a stack,
since new associations may be added easily to the front of the list. When searching an association
list for an association with a given key, the first one found is returned, if there is more than one.

In Emacs Lisp, it is not an error if an element of an association list is not a cons cell. The alist
search functions simply ignore such elements. Many other versions of Lisp signal errors in such
cases.

Note that property lists are similar to association lists in several respects. A property list
behaves like an association list in which each key can occur only once. See Section 7.4 [Property

Lists], page 115, for a comparison of property lists and association lists.

assoc key alist Function
This function returns the first association for key in alist. It compares key against the
alist elements using equal (see Section 2.6 [Equality Predicates|, page 39). It returns

nil if no association in alist has a CAR equal to key. For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
= ((pine . cones) (oak . acorns) (maple . seeds))
(assoc ’oak trees)
= (oak . acorns)
(cdr (assoc ’oak trees))
= acorns
(assoc ’birch trees)
= nil

Here is another example in which the keys and values are not symbols:

(setq needles-per-cluster
>((2 . ("Austrian Pine" "Red Pine"))
(3 . "Pitch Pine")
(6 . "White Pine")))

(cdr (assoc 3 needles-per-cluster))
= "Pitch Pine"

(cdr (assoc 2 needles-per-cluster))
= ("Austrian Pine" "Red Pine")

assq key alist Function
This function is like assoc in that it returns the first association for key in alist, but
it makes the comparison using eq instead of equal. assq returns nil if no association
in alist has a CAR eq to key. This function is used more often than assoc, since eq

98 GNU Emacs Lisp Reference Manual

is faster than equal and most alists use symbols as keys. See Section 2.6 [Equality
Predicates|, page 39.

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(assq ’pine trees)

= (pine . cones)

On the other hand, assq is not usually useful in alists where the keys may not be
symbols:

(setq leaves
>(("simple leaves" . oak)
("compound leaves" . horsechestnut)))

(assq "simple leaves" leaves)
q p

= nil
(assoc "simple leaves" leaves)
= ("simple leaves" . oak)
rassq alist value Function

This function returns the first association with value value in alist. It returns nil if
no association in alist has a CDR eq to value.

rassq is like assq except that the CDR of the alist associations is tested instead of the
CAR. You can think of this as “reverse assq”, finding the key for a given value.

For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(rassq ’acorns trees)
= (oak . acorns)

(rassq ’spores trees)
= nil

Note that rassq cannot be used to search for a value stored in the CAR of the CDR of
an element:

(setq colors ’((rose red) (lily white) (buttercup yellow)))

(rassq ’white colors)
= nil

Chapter 5: Lists

In this case, the CDR of the association (1ily white) is not the symbol white, but
rather the list (white). This can be seen more clearly if the association is written in
dotted pair notation:

(1ily white) = (lily . (white))

copy-alist alist Function
This function returns a two-level deep copy of alist: it creates a new copy of each
association, so that you can alter the associations of the new alist without changing
the old one.

(setq needles-per-cluster
>((2 . ("Austrian Pine" "Red Pine"))
(3 . "Pitch Pine")
(5 . "White Pine")))
=
((2 "Austrian Pine" "Red Pine")
(3 . "Pitch Pine")
(5 . "White Pine"))

(setq copy (copy-alist needles-per-cluster))
=

((2 "Austrian Pine" "Red Pine")

(3 . "Pitch Pine")

(6 . "White Pine"))

(eq needles-per-cluster copy)
= nil

(equal needles-per-cluster copy)
=t

(eq (car needles-per-cluster) (car copy))
= nil

(cdr (car (cdr needles-per-cluster)))
= "Pitch Pine"

(eq (cdr (car (cdr needles-per-cluster)))
(cdr (car (cdr copy))))
=t

100 GNU Emacs Lisp Reference Manual

Chapter 6: Sequences, Arrays, and Vectors 101

6 Sequences, Arrays, and Vectors

Recall that the sequence type is the union of three other Lisp types: lists, vectors, and strings.
In other words, any list is a sequence, any vector is a sequence, and any string is a sequence. The
common property that all sequences have is that each is an ordered collection of elements.

An array is a single primitive object directly containing all its elements. Therefore, all the
elements are accessible in constant time. The length of an existing array cannot be changed. Both
strings and vectors are arrays. A list is a sequence of elements, but it is not a single primitive object;
it is made of cons cells, one cell per element. Therefore, elements farther from the beginning of the
list take longer to access, but it is possible to add elements to the list or remove elements. The

elements of vectors and lists may be any Lisp objects. The elements of strings are all characters.

The following diagram shows the relationship between these types:

| | String | | Vector| |

The Relationship between Sequences, Arrays, and Vectors

6.1 Sequences

In Emacs Lisp, a sequence is either a list, a vector or a string. The common property that all
sequences have is that each is an ordered collection of elements. This section describes functions
that accept any kind of sequence.

102 GNU Emacs Lisp Reference Manual

sequencep object Function
Returns t if object is a list, vector, or string, nil otherwise.

copy-sequence sequence Function
Returns a copy of sequence. The copy is the same type of object as the original
sequence, and it has the same elements in the same order.

Storing a new element into the copy does not affect the original sequence, and vice
versa. However, the elements of the new sequence are not copies; they are identical
(eq) to the elements of the original. Therefore, changes made within these elements,
as found via the copied sequence, are also visible in the original sequence.

If the sequence is a string with text properties, the property list in the copy is itself
a copy, not shared with the original’s property list. However, the actual values of the
properties are shared. See Section 29.17 [Text Properties], page 551.

See also append in Section 5.5 [Building Lists|, page 82, concat in Section 4.3 [Creating
Strings|, page 62, and vconcat in Section 6.4 [Vectors], page 106, for others ways to
copy sequences.

(setq bar ’(1 2))
= (12)

(setq x (vector ’foo bar))
= [foo (1 2)]

(setq y (copy-sequence x))
= [foo (1 2)]

(eq x y)
= nil

(equal x y)
= t

(eq (elt x 1) (elt y 1))
=t

; ;5 Replacing an element of one sequence.
(aset x 0 ’quux)

x = [quux (1 2)]

y = [foo (1 2)]

Chapter 6: Sequences, Arrays, and Vectors 103

;3 Modifying the inside of a shared element.
(setcar (aref x 1) 69)

x = [quux (69 2)]

y = [foo (69 2)]

length sequence Function
Returns the number of elements in sequence. If sequence is a cons cell that is not a list
(because the final CDR is not nil), a wrong-type-argument error is signaled.

(length > (1 2 3))
= 3
(length O))
= 0
(length "foobar")
= 6
(length [1 2 3]1)
= 3

elt sequence index Function
This function returns the element of sequence indexed by index. Legitimate values of
index are integers ranging from 0 up to one less than the length of sequence. If sequence
is a list, then out-of-range values of index return nil; otherwise, they produce an args-

out-of-range error.

(elt [1 2 3 4] 2)
= 3
(elt (1 2 3 4) 2)
= 3
(char-to-string (elt "1234" 2))
= "3
(elt [1 2 3 4] 4)
Args out of range: [1 2 3 4], 4
(elt [1 2 3 4] -1)
Args out of range: [1 2 3 4], -1

This function duplicates aref (see Section 6.3 [Array Functions|, page 104) and nth
(see Section 5.4 [List Elements], page 80), except that it works for any kind of sequence.

104 GNU Emacs Lisp Reference Manual

6.2 Arrays

An array object refers directly to a number of other Lisp objects, called the elements of the
array. Any element of an array may be accessed in constant time. In contrast, an element of a list
requires access time that is proportional to the position of the element in the list.

When you create an array, you must specify how many elements it has. The amount of space
allocated depends on the number of elements. Therefore, it is impossible to change the size of an
array once it is created. You cannot add or remove elements. However, you can replace an element
with a different value.

Emacs defines two types of array, both of which are one-dimensional: strings and vectors. A
vector is a general array; its elements can be any Lisp objects. A string is a specialized array; its
elements must be characters (i.e., integers between 0 and 255). Each type of array has its own read
syntax. See Section 2.3.7 [String Type], page 27, and Section 2.3.8 [Vector Type], page 29.

Both kinds of arrays share these characteristics:

e The first element of an array has index zero, the second element has index 1, and so on. This

is called zero-origin indexing. For example, an array of four elements has indices 0, 1, 2, and 3.

e The elements of an array may be referenced or changed with the functions aref and aset,
respectively (see Section 6.3 [Array Functions], page 104).

In principle, if you wish to have an array of characters, you could use either a string or a vector.
In practice, we always choose strings for such applications, for four reasons:

e They occupy one-fourth the space of a vector of the same elements.
e Strings are printed in a way that shows the contents more clearly as characters.
e Strings can hold text properties. See Section 29.17 [Text Properties], page 551.

e Many of the specialized editing and I/0 facilities of Emacs accept only strings. For example,
you cannot insert a vector of characters into a buffer the way you can insert a string. See
Chapter 4 [Strings and Characters], page 61.

6.3 Functions that Operate on Arrays

In this section, we describe the functions that accept both strings and vectors.

Chapter 6: Sequences, Arrays, and Vectors 105

arrayp object Function
This function returns t if object is an array (i.e., either a vector or a string).

(arrayp [al)
=t

(arrayp "asdf")
=t

aref array index Function
This function returns the indexth element of array. The first element is at index zero.

(setq primes [2 3 5 7 11 13])
= [2 357 11 13]
(aref primes 4)
= 11
(elt primes 4)
= 11
(aref "abcdefg" 1)
= 98 ; ‘b’ is ASCII code 98.

See also the function elt, in Section 6.1 [Sequence Functions], page 101.

aset array index object Function
This function sets the indexth element of array to be object. It returns object.

(setq w [foo bar baz])
= [foo bar baz]
(aset w 0 ’fu)
= fu

= [fu bar baz]

(setq x "asdfasfd")
= "asdfasfd"
(aset x 3 77)
= 90

= "asdZasfd"

If array is a string and object is not a character, a wrong-type-argument error results.

106 GNU Emacs Lisp Reference Manual

fillarray array object Function
This function fills the array array with pointers to object, replacing any previous values.
It returns array.

(setqga [abcde fgl)
= [abcdefg]
(fillarray a 0)
= [0000O0 0 0]

= [00 000 0 0]
(setq s "When in the course")
= "When in the course"
(fillarray s 7-)

If array is a string and object is not a character, a wrong-type-argument error results.

The general sequence functions copy-sequence and length are often useful for objects known

to be arrays. See Section 6.1 [Sequence Functions|, page 101.

6.4 Vectors

Arrays in Lisp, like arrays in most languages, are blocks of memory whose elements can be
accessed in constant time. A vector is a general-purpose array; its elements can be any Lisp
objects. (The other kind of array provided in Emacs Lisp is the string, whose elements must be
characters.) The main uses of vectors in Emacs are as syntax tables (vectors of integers) and
keymaps (vectors of commands). They are also used internally as part of the representation of a
byte-compiled function; if you print such a function, you will see a vector in it.

The indices of the elements of a vector are numbered starting with zero in Emacs Lisp.

Vectors are printed with square brackets surrounding the elements in their order. Thus, a vector
containing the symbols a, b and c is printed as [a b c]. You can write vectors in the same way in
Lisp input.

A vector, like a string or a number, is considered a constant for evaluation: the result of
evaluating it is the same vector. The elements of the vector are not evaluated. See Section 8.2.1
[Self-Evaluating Forms|, page 123.

Chapter 6: Sequences, Arrays, and Vectors 107

Here are examples of these principles:

(setq avector [1 two ’(three) "four" [five]l)

= [1 two (quote (three)) "four" [fivell
(eval avector)

= [1 two (quote (three)) "four" [five]l]
(eq avector (eval avector))

= t

Here are some functions that relate to vectors:

vectorp object Function

This function returns t if object is a vector.

(vectorp [al)
=t

(vectorp "asdf")
= nil

vector &rest objects Function
This function creates and returns a vector whose elements are the arguments, objects.

(vector ’foo 23 [bar baz] "rats")
= [foo 23 [bar baz] "rats"]
(vector)
= [

make-vector integer object Function
This function returns a new vector consisting of integer elements, each initialized to
object.

(setq sleepy (make-vector 9 ’Z))
= [2222272272771Z]

vconcat &rest sequences Function
This function returns a new vector containing all the elements of the sequences. The
arguments sequences may be lists, vectors, or strings. If no sequences are given, an
empty vector is returned.

108 GNU Emacs Lisp Reference Manual

The value is a newly constructed vector that is not eq to any existing vector.

(setq a (vconcat (A B C) "D E F)))
= [ABCDEF]

(eq a (vconcat a))
= nil

(vconcat)
= [

(vconcat [A B C] "aa" ’(foo (6 7)))
= [A B C 97 97 foo (6 7)]

When an argument is an integer (not a sequence of integers), it is converted to a string
of digits making up the decimal printed representation of the integer. This special case
exists for compatibility with Mocklisp, and we don’t recommend you take advantage of
it. If you want to convert an integer in this way, use format (see Section 4.6 [Formatting
Strings|, page 68) or int-to-string (see Section 4.5 [String Conversion|, page 67).

For other concatenation functions, see mapconcat in Section 11.6 [Mapping Functions],
page 183, concat in Section 4.3 [Creating Strings|, page 62, and append in Section 5.5
[Building Lists], page 82.

The append function may be used to convert a vector into a list with the same elements (see
Section 5.5 [Building Lists|, page 82):

(setq avector [1 two (quote (three)) "four" [five]])
= [1 two (quote (three)) "four" [fivell
(append avector nil)
= (1 two (quote (three)) "four" [five])

Chapter 7: Symbols 109

7 Symbols

A symbol is an object with a unique name. This chapter describes symbols, their components,
and how they are created and interned. Property lists are also described. The uses of symbols
as variables and as function names are described in separate chapters; see Chapter 10 [Variables],
page 151, and Chapter 11 [Functions|, page 173. For the precise syntax for symbols, see Section 2.3.9
[Symbol Type], page 29.

You can test whether an arbitrary Lisp object is a symbol with symbolp:

symbolp object Function
This function returns t if object is a symbol, nil otherwise.

7.1 Symbol Components
Each symbol has four components (or “cells”), each of which references another object:

Print name
The print name cell holds a string which names the symbol for reading and printing.
See symbol-name in Section 7.3 [Creating Symbols|, page 112.

Value The value cell holds the current value of the symbol as a variable. When a symbol is
used as a form, the value of the form is the contents of the symbol’s value cell. See
symbol-value in Section 10.6 [Accessing Variables], page 160.

Function The function cell holds the function definition of the symbol. When a symbol is used
as a function, its function definition is used in its place. This cell is also used to make
a symbol stand for a keymap or a keyboard macro, for editor command execution.
Because each symbol has separate value and function cells, variables and function names
do not conflict. See symbol-function in Section 11.8 [Function Cells|, page 187.

Property list
The property list cell holds the property list of the symbol. See symbol-plist in
Section 7.4 [Property Lists|, page 115.

The print name cell always holds a string, and cannot be changed. The other three cells can be

set individually to any specified Lisp object.

110 GNU Emacs Lisp Reference Manual

The print name cell holds the string that is the name of the symbol. Since symbols are rep-
resented textually by their names, it is important not to have two symbols with the same name.
The Lisp reader ensures this: every time it reads a symbol, it looks for an existing symbol with
the specified name before it creates a new one. (In GNU Emacs Lisp, this is done with a hashing
algorithm that uses an obarray; see Section 7.3 [Creating Symbols], page 112.)

In normal usage, the function cell usually contains a function or macro, as that is what the
Lisp interpreter expects to see there (see Chapter 8 [Evaluation]|, page 119). Keyboard macros
(see Section 18.13 [Keyboard Macros|, page 325), keymaps (see Chapter 19 [Keymaps], page 327)
and autoload objects (see Section 8.2.8 [Autoloading|, page 129) are also sometimes stored in the
function cell of symbols. We often refer to “the function foo” when we really mean the function
stored in the function cell of the symbol foo. We make the distinction only when necessary.

Similarly, the property list cell normally holds a correctly formatted property list (see Section 7.4
[Property Lists], page 115), as a number of functions expect to see a property list there.

The function cell or the value cell may be void, which means that the cell does not reference
any object. (This is not the same thing as holding the symbol void, nor the same as holding the
symbol nil.) Examining the value of a cell which is void results in an error, such as ‘Symbol’s
value as variable is void’.

The four functions symbol-name, symbol-value, symbol-plist, and symbol-function return
the contents of the four cells. Here as an example we show the contents of the four cells of the
symbol buffer-file-name:

(symbol-name ’buffer-file-name)

= "buffer-file-name"
(symbol-value ’buffer-file-name)

= "/gnu/elisp/symbols.texi"
(symbol-plist ’buffer-file-name)

= (variable-documentation 29529)
(symbol-function ’buffer-file-name)

= #<subr buffer-file-name>

Because this symbol is the variable which holds the name of the file being visited in the current
buffer, the value cell contents we see are the name of the source file of this chapter of the Emacs
Lisp Manual. The property list cell contains the list (variable-documentation 29529) which
tells the documentation functions where to find documentation about buffer-file-name in the
‘DOC’ file. (29529 is the offset from the beginning of the ‘DOC’ file where the documentation for the
function begins.) The function cell contains the function for returning the name of the file. buffer-
file-name names a primitive function, which has no read syntax and prints in hash notation (see

Chapter 7: Symbols 111

Section 2.3.12 [Primitive Function Type], page 31). A symbol naming a function written in Lisp
would have a lambda expression (or a byte-code object) in this cell.

7.2 Defining Symbols

A definition in Lisp is a special form that announces your intention to use a certain symbol in
a particular way. In Emacs Lisp, you can define a symbol as a variable, or define it as a function

(or macro), or both independently.

A definition construct typically specifies a value or meaning for the symbol for one kind of use,
plus documentation for its meaning when used in this way. Thus, when you define a symbol as a
variable, you can supply an initial value for the variable, plus documentation for the variable.

defvar and defconst are special forms that define a symbol as a global variable. They are
documented in detail in Section 10.5 [Defining Variables], page 157.

defun defines a symbol as a function, creating a lambda expression and storing it in the function
cell of the symbol. This lambda expression thus becomes the function definition of the symbol.
(The term “function definition”, meaning the contents of the function cell, is derived from the idea
that defun gives the symbol its definition as a function.) See Chapter 11 [Functions], page 173.

defmacro defines a symbol as a macro. It creates a macro object and stores it in the function
cell of the symbol. Note that a given symbol can be a macro or a function, but not both at once,
because both macro and function definitions are kept in the function cell, and that cell can hold
only one Lisp object at any given time. See Chapter 12 [Macros|, page 193.

In GNU Emacs Lisp, a definition is not required in order to use a symbol as a variable or
function. Thus, you can make a symbol a global variable with setq, whether you define it first
or not. The real purpose of definitions is to guide programmers and programming tools. They
inform programmers who read the code that certain symbols are intended to be used as variables,
or as functions. In addition, utilities such as ‘etags’ and ‘make-docfile’ can recognize definitions,
and add the appropriate information to tag tables and the ‘emacs/etc/DOC-version’ file. See
Section 21.2 [Accessing Documentation], page 376.

112 GNU Emacs Lisp Reference Manual

7.3 Creating and Interning Symbols

To understand how symbols are created in GNU Emacs Lisp, you must know how Lisp reads
them. Lisp must ensure that it finds the same symbol every time it reads the same set of characters.
Failure to do so would cause complete confusion.

When the Lisp reader encounters a symbol, it reads all the characters of the name. Then it
“hashes” those characters to find an index in a table called an obarray. Hashing is an efficient
method of looking something up. For example, instead of searching a telephone book cover to
cover when looking up Jan Jones, you start with the J’s and go from there. That is a simple
version of hashing. Each element of the obarray is a bucket which holds all the symbols with a
given hash code; to look for a given name, it is sufficient to look through all the symbols in the

bucket for that name’s hash code.

If a symbol with the desired name is found, then it is used. If no such symbol is found, then a
new symbol is created and added to the obarray bucket. Adding a symbol to an obarray is called
interning it, and the symbol is then called an interned symbol. In Emacs Lisp, a symbol may be
interned in only one obarray—if you try to intern the same symbol in more than one obarray, you

will get unpredictable results.

It is possible for two different symbols to have the same name in different obarrays; these
symbols are not eq or equal. However, this normally happens only as part of abbrev definition
(see Chapter 32 [Abbrevs]|, page 595).

Common Lisp note: in Common Lisp, a symbol may be interned in several obarrays at
once.

If a symbol is not in the obarray, then there is no way for Lisp to find it when its name is read.
Such a symbol is called an uninterned symbol relative to the obarray. An uninterned symbol has

all the other characteristics of symbols.

In Emacs Lisp, an obarray is represented as a vector. Each element of the vector is a bucket; its
value is either an interned symbol whose name hashes to that bucket, or 0 if the bucket is empty.
Each interned symbol has an internal link (invisible to the user) to the next symbol in the bucket.
Because these links are invisible, there is no way to scan the symbols in an obarray except using
mapatoms (below). The order of symbols in a bucket is not significant.

Chapter 7: Symbols 113

In an empty obarray, every element is 0, and you can create an obarray with (make-vector
length 0). This is the only valid way to create an obarray. Prime numbers as lengths tend to result

in good hashing; lengths one less than a power of two are also good.

Do not try to create an obarray that is not empty. This does not work—only intern can enter
a symbol in an obarray properly. Also, don’t try to put into an obarray of your own a symbol that

is already interned in the main obarray, because in Emacs Lisp a symbol cannot be in two obarrays

at once.

Most of the functions below take a name and sometimes an obarray as arguments. A wrong-

type-argument error is signaled if the name is not a string, or if the obarray is not a vector.

symbol-name symbol Function
This function returns the string that is symbol’s name. For example:

(symbol-name ’foo)
= "foo"

Changing the string by substituting characters, etc, does change the name of the sym-
bol, but fails to update the obarray, so don’t do it!

make-symbol name Function
This function returns a newly-allocated, uninterned symbol whose name is name (which

must be a string). Its value and function definition are void, and its property list is
nil. In the example below, the value of sym is not eq to foo because it is a distinct

uninterned symbol whose name is also ‘foo’.

(setq sym (make-symbol "foo"))
= foo

(eq sym ’foo)
= nil

intern name &optional obarray Function
This function returns the interned symbol whose name is name. If there is no such
symbol in the obarray, a new one is created, added to the obarray, and returned. If
obarray is supplied, it specifies the obarray to use; otherwise, the value of the global

variable obarray is used.

114 GNU Emacs Lisp Reference Manual

(setq sym (intern "foo"))
= foo

(eq sym ’foo)
=t

(setq syml (intern "foo" other-obarray))
= foo

(eq sym ’foo)
= nil

intern-soft name &optional obarray Function
This function returns the symbol whose name is name, or nil if a symbol with that
name is not found in the obarray. Therefore, you can use intern-soft to test whether
a symbol with a given name is interned. If obarray is supplied, it specifies the obarray
to use; otherwise the value of the global variable obarray is used.

(intern-soft "frazzle") ; No such symbol exists.
= nil

(make-symbol "frazzle") ; Create an uninterned one.
= frazzle

(intern-soft "frazzle") ; That one cannot be found.
= nil

(setq sym (intern "frazzle")) ; Create an interned one.
= frazzle

(intern-soft "frazzle") ; That one can be found!
= frazzle

(eq sym ’frazzle) ; And it is the same one.
= t

obarray Variable

This variable is the standard obarray for use by intern and read.

mapatoms function &optional obarray Function
This function applies function to every symbol in obarray. It returns nil. If obarray
is not supplied, it defaults to the value of obarray, the standard obarray for ordinary

symbols.

(setq count 0)
=0
(defun count-syms (s)
(setq count (1+ count)))
= count-syms
(mapatoms ’count-syms)
= nil

Chapter 7: Symbols 115

count
= 1871

See documentation in Section 21.2 [Accessing Documentation|, page 376, for another

example using mapatoms.

7.4 Property Lists

A property list (plist for short) is a list of paired elements stored in the property list cell of a
symbol. Each of the pairs associates a property name (usually a symbol) with a property or value.
Property lists are generally used to record information about a symbol, such as how to compile
it, the name of the file where it was defined, or perhaps even the grammatical class of the symbol
(representing a word) in a language understanding system.

Character positions in a string or buffer can also have property lists. See Section 29.17 [Text
Properties|, page 551.

The property names and values in a property list can be any Lisp objects, but the names are
usually symbols. They are compared using eq. Here is an example of a property list, found on the
symbol progn when the compiler is loaded:

(1isp-indent-function O byte-compile byte-compile-progn)

Here lisp-indent-function and byte-compile are property names, and the other two elements
are the corresponding values.

Association lists (see Section 5.8 [Association Lists], page 96) are very similar to property lists.
In contrast to association lists, the order of the pairs in the property list is not significant since the
property names must be distinct.

Property lists are better than association lists when it is necessary to attach information to
various Lisp function names or variables. If all the pairs are recorded in one association list, the
program will need to search that entire list each time a function or variable is to be operated on.
By contrast, if the information is recorded in the property lists of the function names or variables
themselves, each search will scan only the length of one property list, which is usually short.
For this reason, the documentation for a variable is recorded in a property named variable-
documentation. The byte compiler likewise uses properties to record those functions needing
special treatment.

116 GNU Emacs Lisp Reference Manual

However, association lists have their own advantages. Depending on your application, it may
be faster to add an association to the front of an association list than to update a property. All
properties for a symbol are stored in the same property list, so there is a possibility of a conflict
between different uses of a property name. (For this reason, it is a good idea to use property names
that are probably unique, such as by including the name of the library in the property name.) An
association list may be used like a stack where associations are pushed on the front of the list and
later discarded; this is not possible with a property list.

symbol-plist symbol Function
This function returns the property list of symbol.

setplist symbol plist Function
This function sets symbol’s property list to plist. Normally, plist should be a well-
formed property list, but this is not enforced.

(setplist ’foo ’(a 1 b (2 3) c nil))
= (a1b (2 3) cnil)
(symbol-plist ’foo)
= (a1b (2 3) cnil)

For symbols in special obarrays, which are not used for ordinary purposes, it may
make sense to use the property list cell in a nonstandard fashion; in fact, the abbrev
mechanism does so (see Chapter 32 [Abbrevs], page 595).

get symbol property Function
This function finds the value of the property named property in symbol’s property list.
If there is no such property, nil is returned. Thus, there is no distinction between a
value of nil and the absence of the property.

The name property is compared with the existing property names using eq, so any
object is a legitimate property.

See put for an example.

put symbol property value Function
This function puts value onto symbol’s property list under the property name property,
replacing any previous value.

Chapter 7: Symbols 117

(put ’fly ’verb ’transitive)
=’transitive
(put ’fly ’noun ’(a buzzing little bug))
= (a buzzing little bug)
(get ’fly ’verb)
= transitive
(symbol-plist ’fly)
= (verb transitive noun (a buzzing little bug))

118 GNU Emacs Lisp Reference Manual

Chapter 8: Evaluation 119

8 Ewvaluation

The evaluation of expressions in Emacs Lisp is performed by the Lisp interpreter—a program
that receives a Lisp object as input and computes its value as an expression. The value is computed
in a fashion that depends on the data type of the object, following rules described in this chapter.
The interpreter runs automatically to evaluate portions of your program, but can also be called

explicitly via the Lisp primitive function eval.

A Lisp object which is intended for evaluation is called an expression or a form. The fact that
expressions are data objects and not merely text is one of the fundamental differences between Lisp-
like languages and typical programming languages. Any object can be evaluated, but in practice

only numbers, symbols, lists and strings are evaluated very often.

It is very common to read a Lisp expression and then evaluate the expression, but reading and
evaluation are separate activities, and either can be performed alone. Reading per se does not
evaluate anything; it converts the printed representation of a Lisp object to the object itself. It
is up to the caller of read whether this object is a form to be evaluated, or serves some entirely
different purpose. See Section 16.3 [Input Functions], page 254.

Do not confuse evaluation with command key interpretation. The editor command loop trans-
lates keyboard input into a command (an interactively callable function) using the active keymaps,
and then uses call-interactively to invoke the command. The execution of the command itself
involves evaluation if the command is written in Lisp, but that is not a part of command key
interpretation itself. See Chapter 18 [Command Loop]|, page 289.

Evaluation is a recursive process. That is, evaluation of a form may cause eval to be called again
in order to evaluate parts of the form. For example, evaluation of a function call first evaluates
each argument of the function call, and then evaluates each form in the function body. Consider
evaluation of the form (car x): the subform x must first be evaluated recursively, so that its value
can be passed as an argument to the function car.

The evaluation of forms takes place in a context called the environment, which consists of the
current values and bindings of all Lisp variables.! Whenever the form refers to a variable without
creating a new binding for it, the value of the binding in the current environment is used. See
Chapter 10 [Variables], page 151.

1 This definition of “environment” is specifically not intended to include all the data which can

affect the result of a program.

120 GNU Emacs Lisp Reference Manual

Evaluation of a form may create new environments for recursive evaluation by binding variables
(see Section 10.3 [Local Variables], page 152). These environments are temporary and will be gone
by the time evaluation of the form is complete. The form may also make changes that persist; these
changes are called side effects. An example of a form that produces side effects is (setq foo 1).

Finally, evaluation of one particular function call, byte-code, invokes the byte-code interpreter
on its arguments. Although the byte-code interpreter is not the same as the Lisp interpreter, it
uses the same environment as the Lisp interpreter, and may on occasion invoke the Lisp interpreter.
(See Chapter 14 [Byte Compilation], page 213.)

The details of what evaluation means for each kind of form are described below (see Section 8.2

[Forms|, page 122).

8.1 Eval

Most often, forms are evaluated automatically, by virtue of their occurrence in a program being
run. On rare occasions, you may need to write code that evaluates a form that is computed at run
time, such as after reading a form from text being edited or getting one from a property list. On
these occasions, use the eval function.

The functions and variables described in this section evaluate forms, specify limits to the evalua-
tion process, or record recently returned values. Loading a file also does evaluation (see Chapter 13
[Loading], page 203).

eval form Function
This is the basic function for performing evaluation. It evaluates form in the current
environment and returns the result. How the evaluation proceeds depends on the type
of the object (see Section 8.2 [Forms|, page 122).

Since eval is a function, the argument expression that appears in a call to eval is
evaluated twice: once as preparation before eval is called, and again by the eval

function itself. Here is an example:

(setq foo ’bar)
= bar

Chapter 8: Evaluation 121

(setq bar ’baz)

= baz
;3 eval receives argument bar, which is the value of foo
(eval foo)

= baz

The number of currently active calls to eval is limited to max-lisp-eval-depth (see

below).

eval-current-buffer &optional stream Command
This function evaluates the forms in the current buffer. It reads forms from the buffer
and calls eval on them until the end of the buffer is reached, or until an error is signaled
and not handled.

If stream is supplied, the variable standard-output is bound to stream during the
evaluation (see Section 16.5 [Output Functions|, page 258).

eval-current-buffer always returns nil.

eval-region start end &optional stream Command
This function evaluates the forms in the current buffer in the region defined by the
positions start and end. It reads forms from the region and calls eval on them until
the end of the region is reached, or until an error is signaled and not handled.

If stream is supplied, standard-output is bound to it for the duration of the command.

eval-region always returns nil.

max-lisp-eval-depth Variable
This variable defines the maximum depth allowed in calls to eval, apply, and funcall
before an error is signaled (with error message "Lisp nesting exceeds max-lisp-
eval-depth"). eval is called recursively to evaluate the arguments of Lisp function
calls and to evaluate bodies of functions.

This limit, with the associated error when it is exceeded, is one way that Lisp avoids

infinite recursion on an ill-defined function.

122 GNU Emacs Lisp Reference Manual

The default value of this variable is 200. If you set it to a value less than 100, Lisp will

reset it to 100 if the given value is reached.

max-specpdl-size provides another limit on nesting. See Section 10.3 [Local Vari-

ables]|, page 152.

values Variable
The value of this variable is a list of values returned by all expressions which were read
from buffers (including the minibuffer), evaluated, and printed. The elements are in

order, most recent first.

(setq x 1)
=1

(list ’A (1+ 2) auto-save-default)
= (A 3 t)

values
= ((A3+t)1..)

This variable is useful for referring back to values of forms recently evaluated. It is
generally a bad idea to print the value of values itself, since this may be very long.
Instead, examine particular elements, like this:

;3 Refer to the most recent evaluation result.
(nth 0 values)
= (A 3 t)
;3 That put a new element on,
53 so all elements move back one.
(nth 1 values)
= (A 3t)
;3 This gets the element that was next-to-last
53 before this example.
(nth 3 values)
= 1

8.2 Kinds of Forms

A Lisp object that is intended to be evaluated is called a form. How Emacs evaluates a form
depends on its data type. Emacs has three different kinds of form that are evaluated differently:

Chapter 8: Evaluation

123

symbols, lists, and “all other types”. All three kinds are described in this section, starting with

“all other types” which are self-evaluating forms.

8.2.1 Self-Evaluating Forms

A self-evaluating form is any form that is not a list or symbol. Self-evaluating forms evaluate

to themselves: the result of evaluation is the same object that was evaluated. Thus, the number

25 evaluates to 25, and the string "foo" evaluates to the string "foo". Likewise, evaluation of a

vector does not cause evaluation of the elements of the vector—it returns the same vector with its

contents unchanged.

7123
= 123
123
= 123
(eval ’123)
= 123
(eval (eval ’123))
= 123

b

b

b

)

; An object, shown without evaluation.

; Evaluated as usual—result is the same.

Evaluated “by hand”—result is the same.

; Evaluating twice changes nothing.

It is common to write numbers, characters, strings, and even vectors in Lisp code, taking

advantage of the fact that they self-evaluate. However, it is quite unusual to do this for types that

lack a read syntax, because it is inconvenient and not very useful; however, it is possible to put

them inside Lisp programs when they are constructed from subexpressions rather than read. Here

is an example:

;3 Build such an expression.

(setq buffer (list ’print (current-buffer)))
= (print #<buffer eval.texi>)

;3 Evaluate it.
(eval buffer)

- #<buffer eval.texi>
= #<buffer eval.texi>

124 GNU Emacs Lisp Reference Manual

8.2.2 Symbol Forms

When a symbol is evaluated, it is treated as a variable. The result is the variable’s value, if it
has one. If it has none (if its value cell is void), an error is signaled. For more information on the

use of variables, see Chapter 10 [Variables], page 151.

In the following example, we set the value of a symbol with setq. When the symbol is later

evaluated, that value is returned.

(setq a 123)

= 123
(eval ’a)

= 123
a

= 123

The symbols nil and t are treated specially, so that the value of nil is always nil, and the
value of t is always t. Thus, these two symbols act like self-evaluating forms, even though eval

treats them like any other symbol.

8.2.3 Classification of List Forms

A form that is a nonempty list is either a function call, a macro call, or a special form, according
to its first element. These three kinds of forms are evaluated in different ways, described below.

The rest of the list consists of arguments for the function, macro or special form.

The first step in evaluating a nonempty list is to examine its first element. This element alone
determines what kind of form the list is and how the rest of the list is to be processed. The first
element is not evaluated, as it would be in some Lisp dialects including Scheme.

8.2.4 Symbol Function Indirection

If the first element of the list is a symbol then evaluation examines the symbol’s function cell,
and uses its contents instead of the original symbol. If the contents are another symbol, this process,
called symbol function indirection, is repeated until a non-symbol is obtained. See Section 11.3
[Function Names|, page 179, for more information about using a symbol as a name for a function

stored in the function cell of the symbol.

Chapter 8: Evaluation 125

One possible consequence of this process is an infinite loop, in the event that a symbol’s function
cell refers to the same symbol. Or a symbol may have a void function cell, causing a void-function
error. But if neither of these things happens, we eventually obtain a non-symbol, which ought to
be a function or other suitable object.

More precisely, we should now have a Lisp function (a lambda expression), a byte-code function,
a primitive function, a Lisp macro, a special form, or an autoload object. Each of these types is
a case described in one of the following sections. If the object is not one of these types, the error
invalid-function is signaled.

The following example illustrates the symbol indirection process. We use fset to set the function
cell of a symbol and symbol-function to get the function cell contents (see Section 11.8 [Function
Cells], page 187). Specifically, we store the symbol car into the function cell of first, and the
symbol first into the function cell of erste.

; 3 Build this function cell linkage:

3
;3 | #<subr car> | <-- | car | <-- | first | <-- | erste |

)

(symbol-function ’car)
= #<subr car>
(fset ’first ’car)
= car
(fset ’erste ’first)
= first
(erste ’(1 2 3)) ; Call the function referenced by erste.
=1

By contrast, the following example calls a function without any symbol function indirection,
because the first element is an anonymous Lisp function, not a symbol.

((lambda (arg) (erste arg))
(1 2 3))
=1

After that function is called, its body is evaluated; this does involve symbol function indirection
when calling erste.

126 GNU Emacs Lisp Reference Manual

The built-in function indirect-function provides an easy way to perform symbol function

indirection explicitly.

indirect-function function Function
This function returns the meaning of function as a function. If function is a symbol,
then it finds function’s function definition and starts over with that value. If function
is not a symbol, then it returns function itself.

Here is how you could define indirect-function in Lisp:

(defun indirect-function (function)
(if (symbolp function)
(indirect-function (symbol-function function))
function))

8.2.5 Evaluation of Function Forms

If the first element of a list being evaluated is a Lisp function object, byte-code object or primitive
function object, then that list is a function call. For example, here is a call to the function +:

+1 %)

When a function call is evaluated, the first step is to evaluate the remaining elements of the
list in the order they appear. The results are the actual argument values, one argument from each
element. Then the function is called with this list of arguments, effectively using the function apply
(see Section 11.5 [Calling Functions|, page 181). If the function is written in Lisp, the arguments
are used to bind the argument variables of the function (see Section 11.2 [Lambda Expressions],
page 174); then the forms in the function body are evaluated in order, and the result of the last
one is used as the value of the function call.

8.2.6 Lisp Macro Evaluation

If the first element of a list being evaluated is a macro object, then the list is a macro call. When
a macro call is evaluated, the elements of the rest of the list are not initially evaluated. Instead,
these elements themselves are used as the arguments of the macro. The macro definition computes
a replacement form, called the expansion of the macro, which is evaluated in place of the original
form. The expansion may be any sort of form: a self-evaluating constant, a symbol or a list. If

Chapter 8: Evaluation 127

the expansion is itself a macro call, this process of expansion repeats until some other sort of form
results.

Normally, the argument expressions are not evaluated as part of computing the macro expansion,
but instead appear as part of the expansion, so they are evaluated when the expansion is evaluated.

For example, given a macro defined as follows:

(defmacro cadr (x)
(list ’car (list ’cdr x)))

an expression such as (cadr (assq *handler list)) is a macro call, and its expansion is:

(car (cdr (assq ’handler list)))
Note that the argument (assq *handler 1list) appears in the expansion.

See Chapter 12 [Macros], page 193, for a complete description of Emacs Lisp macros.

8.2.7 Special Forms

A special form is a primitive function specially marked so that its arguments are not all evaluated.
Special forms define control structures or perform variable bindings—things which functions cannot

do.

Each special form has its own rules for which arguments are evaluated and which are used
without evaluation. Whether a particular argument is evaluated may depend on the results of

evaluating other arguments.

Here is a list, in alphabetical order, of all of the special forms in Emacs Lisp with a reference to
where each is described.

and see Section 9.3 [Combining Conditions], page 135
catch see Section 9.5.1 [Catch and Throw], page 138
cond see Section 9.2 [Conditionals|, page 133

condition-case
see Section 9.5.3.3 [Handling Errors], page 144

128 GNU Emacs Lisp Reference Manual

defconst see Section 10.5 [Defining Variables], page 157
defmacro see Section 12.4 [Defining Macros|, page 195
defun see Section 11.4 [Defining Functions|, page 180
defvar see Section 10.5 [Defining Variables|, page 157
function see Section 11.7 [Anonymous Functions|, page 185

if see Section 9.2 [Conditionals|, page 133

interactive
see Section 18.3 [Interactive Call], page 294

let

let* see Section 10.3 [Local Variables], page 152

or see Section 9.3 [Combining Conditions], page 135
progl

prog2

progn see Section 9.1 [Sequencing], page 131

quote see Section 8.3 [Quoting], page 129

save-excursion

see Section 27.3 [Excursions|, page 502

save-restriction
see Section 27.4 [Narrowing], page 503

save-window-excursion
see Section 25.16 [Window Configurations|, page 471
setq see Section 10.7 [Setting Variables], page 161

setq-default
see Section 10.9.2 [Creating Buffer-Local], page 167

track-mouse
see Section 26.11 [Mouse Tracking], page 482

unwind-protect
see Section 9.5 [Nonlocal Exits], page 138
while see Section 9.4 [Iteration|, page 137

with-output-to-temp-buffer
see Section 35.7 [Temporary Displays]|, page 653

Common Lisp note: here are some comparisons of special forms in GNU Emacs Lisp
and Common Lisp. setq, if, and catch are special forms in both Emacs Lisp and

Chapter 8: Evaluation 129

Common Lisp. defun is a special form in Emacs Lisp, but a macro in Common Lisp.
save-excursion is a special form in Emacs Lisp, but doesn’t exist in Common Lisp.
throw is a special form in Common Lisp (because it must be able to throw multiple
values), but it is a function in Emacs Lisp (which doesn’t have multiple values).

8.2.8 Autoloading

The autoload feature allows you to call a function or macro whose function definition has not
yet been loaded into Emacs. When an autoload object appears as a symbol’s function definition
and that symbol is used as a function, Emacs will automatically install the real definition (plus
other associated code) and then call that definition. (See Section 13.2 [Autoload], page 205.)

8.3 Quoting

The special form quote returns its single argument “unchanged”.

quote object Special Form
This special form returns object, without evaluating it. This allows symbols and lists,
which would normally be evaluated, to be included literally in a program. (It is not

necessary to quote numbers, strings, and vectors since they are self-evaluating.)

Because quote is used so often in programs, Lisp provides a convenient read syntax for
it. An apostrophe character (‘*”) followed by a Lisp object (in read syntax) expands
to a list whose first element is quote, and whose second element is the object. Thus,
the read syntax ’x is an abbreviation for (quote x).

Here are some examples of expressions that use quote:

(quote (+ 1 2))
= (+12)
(quote foo)
= foo
’foo
= foo
’?foo
= (quote foo)

130 GNU Emacs Lisp Reference Manual

> (quote foo)

= (quote foo)
[’foo]

= [(quote foo)]

Other quoting constructs include function (see Section 11.7 [Anonymous Functions], page 185),
which causes an anonymous lambda expression written in Lisp to be compiled, and ¢ (see Sec-
tion 12.5 [Backquote], page 196), which is used to quote only part of a list, while computing and
substituting other parts.

Chapter 9: Control Structures 131

9 Control Structures

A Lisp program consists of expressions or forms (see Section 8.2 [Forms|, page 122). We control
the order of execution of the forms by enclosing them in control structures. Control structures are
special forms which control when, whether, or how many times to execute the forms they contain.

The simplest control structure is sequential execution: first form a, then form b, and so on.
This is what happens when you write several forms in succession in the body of a function, or at
top level in a file of Lisp code—the forms are executed in the order they are written. We call this
textual order. For example, if a function body consists of two forms a and b, evaluation of the
function evaluates first a and then b, and the function’s value is the value of b.

Naturally, Emacs Lisp has many kinds of control structures, including other varieties of sequenc-
ing, function calls, conditionals, iteration, and (controlled) jumps. The built-in control structures
are special forms since their subforms are not necessarily evaluated. You can use macros to define
your own control structure constructs (see Chapter 12 [Macros|, page 193).

9.1 Sequencing

Evaluating forms in the order they are written is the most common control structure. Sometimes
this happens automatically, such as in a function body. Elsewhere you must use a control structure
construct to do this: progn, the simplest control construct of Lisp.

A progn special form looks like this:
(progn a b ¢ ...)

and it says to execute the forms a, b, ¢ and so on, in that order. These forms are called the body
of the progn form. The value of the last form in the body becomes the value of the entire progn.

When Lisp was young, progn was the only way to execute two or more forms in succession and
use the value of the last of them. But programmers found they often needed to use a progn in the
body of a function, where (at that time) only one form was allowed. So the body of a function was
made into an “implicit progn”: several forms are allowed just as in the body of an actual progn.
Many other control structures likewise contain an implicit progn. As a result, progn is not used as
often as it used to be. It is needed now most often inside of an unwind-protect, and, or or.

132 GNU Emacs Lisp Reference Manual

progn forms... Special Form
This special form evaluates all of the forms, in textual order, returning the result of
the final form.

(progn (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The third form"

Two other control constructs likewise evaluate a series of forms but return a different value:

progl forml forms. .. Special Form
This special form evaluates form1 and all of the forms, in textual order, returning the
result of forml.

(progl (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The first form"

Here is a way to remove the first element from a list in the variable x, then return the
value of that former element:

(progl (car x) (setq x (cdr x)))

prog?2 forml form?2 forms. .. Special Form

This special form evaluates forml, form2, and all of the following forms, in textual
order, returning the result of form2.

Chapter 9: Control Structures 133

(prog2 (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The second form"

9.2 Conditionals

Conditional control structures choose among alternatives. Emacs Lisp has two conditional forms:
if, which is much the same as in other languages, and cond, which is a generalized case statement.

if condition then-form else-forms. .. Special Form
if chooses between the then-form and the else-forms based on the value of condition.
If the evaluated condition is non-nil, then-form is evaluated and the result returned.
Otherwise, the else-forms are evaluated in textual order, and the value of the last one
is returned. (The else part of if is an example of an implicit progn. See Section 9.1
[Sequencing], page 131.)

If condition has the value nil, and no else-forms are given, if returns nil.

if is a special form because the branch which is not selected is never evaluated—it

is ignored. Thus, in the example below, true is not printed because print is never
called.

(if nil
(print ’true)
’very-false)
= very-false

cond clause. .. Special Form
cond chooses among an arbitrary number of alternatives. Each clause in the cond
must be a list. The CAR of this list is the condition; the remaining elements, if any, the
body-forms. Thus, a clause looks like this:

(condition body-forms...)

134 GNU Emacs Lisp Reference Manual

cond tries the clauses in textual order, by evaluating the condition of each clause. If
the value of condition is non-nil, the body-forms are evaluated, and the value of the
last of body-forms becomes the value of the cond. The remaining clauses are ignored.

If the value of condition is nil, the clause “fails”, so the cond moves on to the following

clause, trying its condition.

If every condition evaluates to nil, so that every clause fails, cond returns nil.

A clause may also look like this:

(condition)

Then, if condition is non-nil when tested, the value of condition becomes the value of

the cond form.

The following example has four clauses, which test for the cases where the value of x

is a number, string, buffer and symbol, respectively:

(cond ((numberp x) x)
((stringp x) x)
((bufferp x)
(setq temporary-hack x) ; multiple body-forms
(buffer—-name x)) ; in one clause
((symbolp x) (symbol-value x)))

Often we want the last clause to be executed whenever none of the previous clauses
was successful. To do this, we use t as the condition of the last clause, like this: (t
body-forms). The form t evaluates to t, which is never nil, so this clause never fails,

provided the cond gets to it at all.
For example,
(cond ((eq a 1) ’foo)
(t "default"))

= "default"

This expression is a cond which returns foo if the value of a is 1, and returns the string

"default" otherwise.

Chapter 9: Control Structures 135

Both cond and if can usually be written in terms of the other. Therefore, the choice between

them is a matter of taste and style. For example:

(if a b ¢)

(cond (a b) (t ¢))

9.3 Constructs for Combining Conditions

This section describes three constructs that are often used together with if and cond to express
complicated conditions. The constructs and and or can also be used individually as kinds of

multiple conditional constructs.

not condition Function
This function tests for the falsehood of condition. It returns t if condition is nil, and
nil otherwise. The function not is identical to null, and we recommend using null if
you are testing for an empty list.

and conditions. .. Special Form
The and special form tests whether all the conditions are true. It works by evaluating

the conditions one by one in the order written.

If any of the conditions evaluates to nil, then the result of the and must be nil
regardless of the remaining conditions; so the remaining conditions are ignored and the
and returns right away.

If all the conditions turn out non-nil, then the value of the last of them becomes the
value of the and form.

Here is an example. The first condition returns the integer 1, which is not nil. Simi-
larly, the second condition returns the integer 2, which is not nil. The third condition
is nil, so the remaining condition is never evaluated.

(and (print 1) (print 2) nil (print 3))
41
-4 2

= nil

136 GNU Emacs Lisp Reference Manual

Here is a more realistic example of using and:

(if (and (consp foo) (eq (car foo) ’x))
(message "foo is a list starting with x"))

Note that (car foo) is not executed if (consp foo) returns nil, thus avoiding an

error.
and can be expressed in terms of either if or cond. For example:

(and argl arg2 arg3)

(if argl (if arg2 arg3))

(cond (argl (cond (arg2 arg3))))

or conditions. .. Special Form
The or special form tests whether at least one of the conditions is true. It works by
evaluating all the conditions one by one in the order written.

If any of the conditions evaluates to a non-nil value, then the result of the or must be
non-nil; so the remaining conditions are ignored and the or returns right away. The
value it returns is the non-nil value of the condition just evaluated.

If all the conditions turn out nil, then the or expression returns nil.

For example, this expression tests whether x is either 0 or nil:

(or (eq x nil) (= x 0))
Like the and construct, or can be written in terms of cond. For example:

(or argl arg2 arg3)

(cond (argl)
(arg2)
(arg3))

You could almost write or in terms of if, but not quite:

Chapter 9: Control Structures 137

(if argl argl
(if arg2 arg?2
arg3))

This is not completely equivalent because it can evaluate argl or arg2 twice. By
contrast, (or argl arg2 arg3) never evaluates any argument more than once.

9.4 Iteration

Iteration means executing part of a program repetitively. For example, you might want to repeat
some expressions once for each element of a list, or once for each integer from 0 to n. You can do
this in Emacs Lisp with the special form while:

while condition forms. .. Special Form
while first evaluates condition. If the result is non-nil, it evaluates forms in textual
order. Then it reevaluates condition, and if the result is non-nil, it evaluates forms
again. This process repeats until condition evaluates to nil.

There is no limit on the number of iterations that may occur. The loop will continue
until either condition evaluates to nil or until an error or throw jumps out of it (see
Section 9.5 [Nonlocal Exits|, page 138).

The value of a while form is always nil.

(setq num 0)
= 0
(while (< num 4)
(princ (format "Iteration %d." num))
(setq num (1+ num)))
- Iteration O.
- Iteration 1
- Iteration 2.
- Iteration 3
= nil

If you would like to execute something on each iteration before the end-test, put it
together with the end-test in a progn as the first argument of while, as shown here:

138 GNU Emacs Lisp Reference Manual

(while (progn
(forward-line 1)
(not (looking-at "~$"))))

This moves forward one line and continues moving by lines until an empty line is
reached.

9.5 Nonlocal Exits

A nonlocal exit is a transfer of control from one point in a program to another remote point.
Nonlocal exits can occur in Emacs Lisp as a result of errors; you can also use them under explicit

control. Nonlocal exits unbind all variable bindings made by the constructs being exited.

9.5.1 Explicit Nonlocal Exits: catch and throw

Most control constructs affect only the flow of control within the construct itself. The function
throw is the exception to this rule for of normal program execution: it performs a nonlocal exit on
request. (There are other exceptions, but they are for error handling only.) throw is used inside a
catch, and jumps back to that catch. For example:

(catch ’foo
(progn

(throw ’foo t)
o))

The throw transfers control straight back to the corresponding catch, which returns immediately.
The code following the throw is not executed. The second argument of throw is used as the return
value of the catch.

The throw and the catch are matched through the first argument: throw searches for a catch
whose first argument is eq to the one specified. Thus, in the above example, the throw specifies
foo, and the catch specifies the same symbol, so that catch is applicable. If there is more than
one applicable catch, the innermost one takes precedence.

All Lisp constructs between the catch and the throw, including function calls, are exited auto-
matically along with the catch. When binding constructs such as let or function calls are exited

Chapter 9: Control Structures 139

in this way, the bindings are unbound, just as they are when these constructs are exited normally
(see Section 10.3 [Local Variables|, page 152). Likewise, the buffer and position saved by save-
excursion (see Section 27.3 [Excursions], page 502) are restored, and so is the narrowing status
saved by save-restriction and the window selection saved by save-window-excursion (see Sec-
tion 25.16 [Window Configurations], page 471). Any cleanups established with the unwind-protect
special form are executed if the unwind-protect is exited with a throw.

The throw need not appear lexically within the catch that it jumps to. It can equally well be
called from another function called within the catch. As long as the throw takes place chronologi-
cally after entry to the catch, and chronologically before exit from it, it has access to that catch.
This is why throw can be used in commands such as exit-recursive-edit which throw back to
the editor command loop (see Section 18.10 [Recursive Editing], page 321).

Common Lisp note: most other versions of Lisp, including Common Lisp, have sev-
eral ways of transferring control nonsequentially: return, return-from, and go, for
example. Emacs Lisp has only throw.

catch tag body... Special Form
catch establishes a return point for the throw function. The return point is distin-
guished from other such return points by tag, which may be any Lisp object. The
argument tag is evaluated normally before the return point is established.

With the return point in effect, the forms of the body are evaluated in textual order.
If the forms execute normally, without error or nonlocal exit, the value of the last body

form is returned from the catch.

If a throw is done within body specifying the same value tag, the catch exits im-
mediately; the value it returns is whatever was specified as the second argument of

throw.

throw tag value Function
The purpose of throw is to return from a return point previously established with
catch. The argument tag is used to choose among the various existing return points;
it must be eq to the value specified in the catch. If multiple return points match tag,

the innermost one is used.

The argument value is used as the value to return from that catch.

140 GNU Emacs Lisp Reference Manual

If no return point is in effect with tag tag, then a no-catch error is signaled with data
(tag value).

9.5.2 Examples of catch and throw

One way to use catch and throw is to exit from a doubly nested loop. (In most languages, this
would be done with a “go to”.) Here we compute (foo i j) for i and j varying from 0 to 9:

(defun search-foo ()
(catch ’loop
(let ((1 0))
(while (< i 10)
(et ((3 0))
(while (< j 10)
(if (foo i j)
(throw ’loop (list i j)))
(setq j (1+ §))))
(setq 1 (1+ 1))))))

If foo ever returns non-nil, we stop immediately and return a list of i and j. If foo always returns

nil, the catch returns normally, and the value is nil, since that is the result of the while.

Here are two tricky examples, slightly different, showing two return points at once. First, two
return points with the same tag, hack:

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))
= catch2
(catch ’hack

(print (catch2 ’hack))
’no)

- yes

= no

Since both return points have tags that match the throw, it goes to the inner one, the one established

in catch2. Therefore, catch2 returns normally with value yes, and this value is printed. Finally

Chapter 9: Control Structures 141

the second body form in the outer catch, which is ’no, is evaluated and returned from the outer
catch.

Now let’s change the argument given to catch2:

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))
= catch2

(catch ’hack
(print (catch2 ’quux))
’no)

= yes

We still have two return points, but this time only the outer one has the tag hack; the inner one
has the tag quux instead. Therefore, the throw returns the value yes from the outer return point.
The function print is never called, and the body-form ’no is never evaluated.

9.5.3 Errors

When Emacs Lisp attempts to evaluate a form that, for some reason, cannot be evaluated, it
signals an error.

When an error is signaled, Emacs’s default reaction is to print an error message and terminate
execution of the current command. This is the right thing to do in most cases, such as if you type
C-f at the end of the buffer.

In complicated programs, simple termination may not be what you want. For example, the
program may have made temporary changes in data structures, or created temporary buffers which
should be deleted before the program is finished. In such cases, you would use unwind-protect
to establish cleanup expressions to be evaluated in case of error. Occasionally, you may wish the
program to continue execution despite an error in a subroutine. In these cases, you would use
condition-case to establish error handlers to recover control in case of error.

Resist the temptation to use error handling to transfer control from one part of the program to
another; use catch and throw. See Section 9.5.1 [Catch and Throw], page 138.

142 GNU Emacs Lisp Reference Manual

9.5.3.1 How to Signal an Error

Most errors are signaled “automatically” within Lisp primitives which you call for other pur-
poses, such as if you try to take the CAR of an integer or move forward a character at the end of

the buffer; you can also signal errors explicitly with the functions error and signal.

Quitting, which happens when the user types C-g, is not considered an error, but it handled
almost like an error. See Section 18.8 [Quitting], page 317.

error format-string &rest args Function
This function signals an error with an error message constructed by applying format
(see Section 4.5 [String Conversion], page 67) to format-string and args.

Typical uses of error is shown in the following examples:

(error "You have committed an error.
Try something else.")
You have committed an error.
Try something else.

(error "You have committed %d errors." 10)
You have committed 10 errors.

error works by calling signal with two arguments: the error symbol error, and a list

containing the string returned by format.

If you want to use a user-supplied string as an error message verbatim, don’t just write
(error string). If string contains ‘%’, it will be interpreted as a format specifier, with
undesirable results. Instead, use (error "%s" string).

signal error-symbol data Function
This function signals an error named by error-symbol. The argument data is a list of
additional Lisp objects relevant to the circumstances of the error.

The argument error-symbol must be an error symbol—a symbol bearing a property
error-conditions whose value is a list of condition names. This is how different sorts
of errors are classified.

Chapter 9: Control Structures 143

The number and significance of the objects in data depends on error-symbol. For
example, with a wrong-type-arg error, there are two objects in the list: a predicate
which describes the type that was expected, and the object which failed to fit that
type. See Section 9.5.3.4 [Error Names|, page 147, for a description of error symbols.

Both error-symbol and data are available to any error handlers which handle the error:
a list (error-symbol . data) is constructed to become the value of the local variable
bound in the condition-case form (see Section 9.5.3.3 [Handling Errors], page 144).
If the error is not handled, both of them are used in printing the error message.

The function signal never returns (though in older Emacs versions it could sometimes

return).

(signal ’wrong-number-of-arguments ’(x y))
Wrong number of arguments: x, y

(signal ’no-such-error ’("My unknown error condition."))
peculiar error: "My unknown error condition."

Common Lisp note: Emacs Lisp has nothing like the Common Lisp concept of con-
tinuable errors.

9.5.3.2 How Emacs Processes Errors

When an error is signaled, Emacs searches for an active handler for the error. A handler is a
specially marked place in the Lisp code of the current function or any of the functions by which it
was called. If an applicable handler exists, its code is executed, and control resumes following the
handler. The handler executes in the environment of the condition-case which established it;
all functions called within that condition-case have already been exited, and the handler cannot
return to them.

If no applicable handler is in effect in your program, the current command is terminated and
control returns to the editor command loop, because the command loop has an implicit handler
for all kinds of errors. The command loop’s handler uses the error symbol and associated data to

print an error message.

When an error is not handled explicitly, it may cause the Lisp debugger to be called. The
debugger is enabled if the variable debug-on-error (see Section 15.1.1 [Error Debugging], page 223)

144 GNU Emacs Lisp Reference Manual

is non-nil. Unlike error handlers, the debugger runs in the environment of the error, so that you

can examine values of variables precisely as they were at the time of the error.

9.5.3.3 Writing Code to Handle Errors

The usual effect of signaling an error is to terminate the command that is running and return
immediately to the Emacs editor command loop. You can arrange to trap errors occurring in a
part of your program by establishing an error handler with the special form condition-case. A
simple example looks like this:

(condition-case nil
(delete-file filename)
(error nil))

This deletes the file named filename, catching any error and returning nil if an error occurs.

The second argument of condition-case is called the protected form. (In the example above,
the protected form is a call to delete-file.) The error handlers go into effect when this form
begins execution and are deactivated when this form returns. They remain in effect for all the
intervening time. In particular, they are in effect during the execution of subroutines called by this
form, and their subroutines, and so on. This is a good thing, since, strictly speaking, errors can be
signaled only by Lisp primitives (including signal and error) called by the protected form, not
by the protected form itself.

The arguments after the protected form are handlers. Each handler lists one or more condition
names (which are symbols) to specify which errors it will handle. The error symbol specified when
an error is signaled also defines a list of condition names. A handler applies to an error if they have
any condition names in common. In the example above, there is one handler, and it specifies one
condition name, error, which covers all errors.

The search for an applicable handler checks all the established handlers starting with the most
recently established one. Thus, if two nested condition-case forms try to handle the same error,
the inner of the two will actually handle it.

When an error is handled, control returns to the handler. Before this happens, Emacs unbinds
all variable bindings made by binding constructs that are being exited and executes the cleanups
of all unwind-protect forms that are exited. Once control arrives at the handler, the body of the
handler is executed.

Chapter 9: Control Structures 145

After execution of the handler body, execution continues by returning from the condition-case
form. Because the protected form is exited completely before execution of the handler, the handler
cannot resume execution at the point of the error, nor can it examine variable bindings that were
made within the protected form. All it can do is clean up and proceed.

condition-case is often used to trap errors that are predictable, such as failure to open a file
in a call to insert-file-contents. It is also used to trap errors that are totally unpredictable,
such as when the program evaluates an expression read from the user.

Error signaling and handling have some resemblance to throw and catch, but they are entirely
separate facilities. An error cannot be caught by a catch, and a throw cannot be handled by an
error handler (though using throw when there is no suitable catch signals an error which can be
handled).

condition-case var protected-form handlers. . . Special Form
This special form establishes the error handlers handlers around the execution of
protected-form. If protected-form executes without error, the value it returns becomes
the value of the condition-case form; in this case, the condition-case has no effect.
The condition-case form makes a difference when an error occurs during protected-
form.

Each of the handlers is a list of the form (conditions body...). conditions is an error
condition name to be handled, or a list of condition names; body is one or more Lisp
expressions to be executed when this handler handles an error. Here are examples of
handlers:

(error nil)
(arith-error (message "Division by zero"))

((arith-error file-error)
(message
"Either division by zero or failure to open a file"))

Each error that occurs has an error symbol which describes what kind of error it
is. The error-conditions property of this symbol is a list of condition names (see
Section 9.5.3.4 [Error Names|, page 147). Emacs searches all the active condition-

case forms for a handler which specifies one or more of these names; the innermost

146 GNU Emacs Lisp Reference Manual

matching condition-case handles the error. The handlers in this condition-case
are tested in the order in which they appear.

The body of the handler is then executed, and the condition-case returns normally,
using the value of the last form in the body as the overall value.

The argument var is a variable. condition-case does not bind this variable when
executing the protected-form, only when it handles an error. At that time, var is
bound locally to a list of the form (error-symbol . data), giving the particulars of the
error. The handler can refer to this list to decide what to do. For example, if the
error is for failure opening a file, the file name is the second element of data—the third

element of var.

If var is nil, that means no variable is bound. Then the error symbol and associated

data are not made available to the handler.

Here is an example of using condition-case to handle the error that results from dividing by

zero. The handler prints out a warning message and returns a very large number.

(defun safe-divide (dividend divisor)
(condition-case err
;3 Protected form.
(/ dividend divisor)
;3 The handler.
(arith-error ; Condition.
(princ (format "Arithmetic error: %s" err))
1000000)))
= safe-divide
(safe-divide 5 0)

- Arithmetic error: (arith-error)
= 1000000

The handler specifies condition name arith-error so that it will handle only division-by-zero
errors. Other kinds of errors will not be handled, at least not by this condition-case. Thus,

(safe-divide nil 3)
Wrong type argument: integer-or-marker-p, nil

Here is a condition-case that catches all kinds of errors, including those signaled with error:

Chapter 9: Control Structures 147

(setq baz 34)
= 34

(condition-case err
(if (eq baz 35)
t
;3 This is a call to the function error.
(error "Rats! The variable %s was %s, not 35." ’baz baz))
;3 This is the handler; it is not a form.
(error (princ (format "The error was: %s" err))
2))
-4 The error was: (error "Rats! The variable baz was 34, not 35.")
= 2

9.5.3.4 Error Symbols and Condition Names

When you signal an error, you specify an error symbol to specify the kind of error you have in
mind. Each error has one and only one error symbol to categorize it. This is the finest classification
of errors defined by the Lisp language.

These narrow classifications are grouped into a hierarchy of wider classes called error conditions,
identified by condition names. The narrowest such classes belong to the error symbols themselves:
each error symbol is also a condition name. There are also condition names for more extensive
classes, up to the condition name error which takes in all kinds of errors. Thus, each error has
one or more condition names: error, the error symbol if that is distinct from error, and perhaps
some intermediate classifications.

In order for a symbol to be usable as an error symbol, it must have an error-conditions
property which gives a list of condition names. This list defines the conditions which this kind of
error belongs to. (The error symbol itself, and the symbol error, should always be members of
this list.) Thus, the hierarchy of condition names is defined by the error-conditions properties
of the error symbols.

In addition to the error-conditions list, the error symbol should have an error-message
property whose value is a string to be printed when that error is signaled but not handled. If the

error-message property exists, but is not a string, the error message ‘peculiar error’ is used.

Here is how we define a new error symbol, new-error:

148 GNU Emacs Lisp Reference Manual

(put ’new-error
’error-conditions
> (error my-own-errors new-error))
= (error my-own-errors new-error)
(put ’new-error ’error-message "A new error")

= "A new error"

This error has three condition names: new-error, the narrowest classification; my-own-errors,

which we imagine is a wider classification; and error, which is the widest of all.

Naturally, Emacs will never signal a new-error on its own; only an explicit call to signal (see

Section 9.5.3 [Errors], page 141) in your code can do this:

(signal ’new-error ’(x y))

A new error: x, y

This error can be handled through any of the three condition names. This example handles

new-error and any other errors in the class my-own-errors:

(condition-case foo
(bar nil t)
(my-own-errors nil))

The significant way that errors are classified is by their condition names—the names used to
match errors with handlers. An error symbol serves only as a convenient way to specify the intended
error message and list of condition names. If signal were given a list of condition names rather
than one error symbol, that would be cumbersome.

By contrast, using only error symbols without condition names would seriously decrease the
power of condition-case. Condition names make it possible to categorize errors at various levels
of generality when you write an error handler. Using error symbols alone would eliminate all but

the narrowest level of classification.

See Appendix C [Standard Errors], page 707, for a list of all the standard error symbols and
their conditions.

Chapter 9: Control Structures 149

9.5.4 Cleaning Up from Nonlocal Exits

The unwind-protect construct is essential whenever you temporarily put a data structure in
an inconsistent state; it permits you to ensure the data are consistent in the event of an error or
throw.

unwind-protect body cleanup-forms. .. Special Form
unwind-protect executes the body with a guarantee that the cleanup-forms will be
evaluated if control leaves body, no matter how that happens. The body may complete
normally, or execute a throw out of the unwind-protect, or cause an error; in all cases,
the cleanup-forms will be evaluated.

Only the body is actually protected by the unwind-protect. If any of the cleanup-
forms themselves exit nonlocally (e.g., via a throw or an error), it is not guaranteed
that the rest of them will be executed. If the failure of one of the cleanup-forms has
the potential to cause trouble, then it should be protected by another unwind-protect
around that form.

The number of currently active unwind-protect forms counts, together with the num-
ber of local variable bindings, against the limit max-specpdl-size (see Section 10.3
[Local Variables], page 152).

For example, here we make an invisible buffer for temporary use, and make sure to kill it before
finishing:

(save-excursion
(let ((buffer (get-buffer-create " *temp*")))
(set-buffer buffer)
(unwind-protect
body
(kill-buffer buffer))))

You might think that we could just as well write (kill-buffer (current-buffer)) and dispense
with the variable buffer. However, the way shown above is safer, if body happens to get an
error after switching to a different buffer! (Alternatively, you could write another save-excursion
around the body, to ensure that the temporary buffer becomes current in time to kill it.)

150 GNU Emacs Lisp Reference Manual

Here is an actual example taken from the file ‘ftp.el’. It creates a process (see Chapter 33
[Processes], page 603) to try to establish a connection to a remote machine. As the function
ftp-login is highly susceptible to numerous problems which the writer of the function cannot
anticipate, it is protected with a form that guarantees deletion of the process in the event of failure.

Otherwise, Emacs might fill up with useless subprocesses.

(let ((win nil))
(unwind-protect
(progn
(setq process (ftp-setup-buffer host file))
(if (setq win (ftp-login process host user password))
(message "Logged in")
(error "Ftp login failed")))
(or win (and process (delete-process process)))))

This example actually has a small bug: if the user types C-g to quit, and the quit happens
immediately after the function ftp-setup-buffer returns but before the variable process is set,
the process will not be killed. There is no easy way to fix this bug, but at least it is very unlikely.

Chapter 10: Variables 151

10 Variables

A variable is a name used in a program to stand for a value. Nearly all programming languages
have variables of some sort. In the text for a Lisp program, variables are written using the syntax
for symbols.

In Lisp, unlike most programming languages, programs are represented primarily as Lisp objects
and only secondarily as text. The Lisp objects used for variables are symbols: the symbol name
is the variable name, and the variable’s value is stored in the value cell of the symbol. The use of
a symbol as a variable is independent of whether the same symbol has a function definition. See
Section 7.1 [Symbol Components], page 109.

The textual form of a program is determined by its Lisp object representation; it is the read
syntax for the Lisp object which constitutes the program. This is why a variable in a textual Lisp
program is written as the read syntax for the symbol that represents the variable.

10.1 Global Variables

The simplest way to use a variable is globally. This means that the variable has just one value
at a time, and this value is in effect (at least for the moment) throughout the Lisp system. The
value remains in effect until you specify a new one. When a new value replaces the old one, no
trace of the old value remains in the variable.

You specify a value for a symbol with setq. For example,

(setq x ’(a b))

gives the variable x the value (a b). Note that the first argument of setq, the name of the variable,
is not evaluated, but the second argument, the desired value, is evaluated normally.

Once the variable has a value, you can refer to it by using the symbol by itself as an expression.
Thus,

= (a b)

assuming the setq form shown above has already been executed.

152 GNU Emacs Lisp Reference Manual

If you do another setq, the new value replaces the old one:

X
= (a b)
(setq x 4)
= 4
X
= 4

10.2 Variables that Never Change

Emacs Lisp has two special symbols, nil and t, that always evaluate to themselves. These
symbols cannot be rebound, nor can their value cells be changed. An attempt to change the value
of nil or t signals a setting-constant error.

nil = ’nil
= nil
(setq nil 500)
Attempt to set constant symbol: nil

10.3 Local Variables

Global variables are given values that last until explicitly superseded with new values. Sometimes
it is useful to create variable values that exist temporarily—only while within a certain part of the
program. These values are called local, and the variables so used are called local variables.

For example, when a function is called, its argument variables receive new local values which
last until the function exits. Similarly, the let special form explicitly establishes new local values
for specified variables; these last until exit from the let form.

When a local value is established, the previous value (or lack of one) of the variable is saved
away. When the life span of the local value is over, the previous value is restored. In the mean
time, we say that the previous value is shadowed and not visible. Both global and local values may
be shadowed (see Section 10.8.1 [Scope], page 163).

Chapter 10: Variables 153

If you set a variable (such as with setq) while it is local, this replaces the local value; it does
not alter the global value, or previous local values that are shadowed. To model this behavior, we

speak of a local binding of the variable as well as a local value.

The local binding is a conceptual place that holds a local value. Entry to a function, or a special
form such as let, creates the local binding; exit from the function or from the let removes the
local binding. As long as the local binding lasts, the variable’s value is stored within it. Use of
setq or set while there is a local binding stores a different value into the local binding; it does not

create a new binding.
We also speak of the global binding, which is where (conceptually) the global value is kept.

A variable can have more than one local binding at a time (for example, if there are nested
let forms that bind it). In such a case, the most recently created local binding that still exists
is the current binding of the variable. (This is called dynamic scoping; see Section 10.8 [Variable
Scoping], page 162.) If there are no local bindings, the variable’s global binding is its current
binding. We also call the current binding the most-local existing binding, for emphasis. Ordinary
evaluation of a symbol always returns the value of its current binding.

The special forms let and let* exist to create local bindings.

let (bindings...) forms... Special Form
This function binds variables according to bindings and then evaluates all of the forms
in textual order. The let-form returns the value of the last form in forms.

Each of the bindings is either (i) a symbol, in which case that symbol is bound to nil;
or (ii) a list of the form (symbol value-form), in which case symbol is bound to the

result of evaluating value-form. If value-form is omitted, nil is used.

All of the value-forms in bindings are evaluated in the order they appear and before
any of the symbols are bound. Here is an example of this: Z is bound to the old value
of Y, which is 2, not the new value, 1.

(setq Y 2)
= 2
(let ((Y 1)
(Z V))
(1list Y 2))
= (12

154 GNU Emacs Lisp Reference Manual

let* (bindings...) forms. .. Special Form
This special form is like 1let, except that each symbol in bindings is bound as soon as
its new value is computed, before the computation of the values of the following local
bindings. Therefore, an expression in bindings may reasonably refer to the preceding
symbols bound in this let* form. Compare the following example with the example

above for let.

(setq Y 2)
= 2
(let* ((Y 1)
(Z Y)) ; Use the just-established value of Y.
(list Y 2))
= (11

Here is a complete list of the other facilities which create local bindings:

e Function calls (see Chapter 11 [Functions], page 173).
e Macro calls (see Chapter 12 [Macros|, page 193).

e condition-case (see Section 9.5.3 [Errors|, page 141).

max-specpdl-size Variable
This variable defines the limit on the total number of local variable bindings and
unwind-protect cleanups (see Section 9.5 [Nonlocal Exits|, page 138) that are al-
lowed before signaling an error (with data "Variable binding depth exceeds max-

specpdl-size").

This limit, with the associated error when it is exceeded, is one way that Lisp avoids

infinite recursion on an ill-defined function.

The default value is 600.

max-lisp-eval-depth provides another limit on depth of nesting. See Section 8.1
[Eval], page 120.

Chapter 10: Variables 155

10.4 When a Variable is “Void”

If you have never given a symbol any value as a global variable, we say that that symbol’s global
value is void. In other words, the symbol’s value cell does not have any Lisp object in it. If you

try to evaluate the symbol, you get a void-variable error rather than a value.

Note that a value of nil is not the same as void. The symbol nil is a Lisp object and can be
the value of a variable just as any other object can be; but it is a value. A void variable does not
have any value.

After you have given a variable a value, you can make it void once more using makunbound.

makunbound symbol Function
This function makes the current binding of symbol void. This causes any future attempt
to use this symbol as a variable to signal the error void-variable, unless or until you

set it again.

makunbound returns symbol.

(makunbound ’x) ; Make the global value
; of x void.
= X
X
Symbol’s value as variable is void: x

If symbol is locally bound, makunbound affects the most local existing binding. This
is the only way a symbol can have a void local binding, since all the constructs that
create local bindings create them with values. In this case, the voidness lasts at most
as long as the binding does; when the binding is removed due to exit from the construct
that made it, the previous or global binding is reexposed as usual, and the variable is
no longer void unless the newly reexposed binding was void all along.

(setq x 1) ; Put a value in the global binding.
=1
(et ((x 2)) ; Locally bind it.
(makunbound ’x) ; Void the local binding.
x)

Symbol’s value as variable is void: x

156 GNU Emacs Lisp Reference Manual

X ; The global binding is unchanged.
=1
(et ((x 2)) ; Locally bind it.
(let ((x 3)) ; And again.
(makunbound ’x) ; Void the innermost-local binding.
x)) ; And refer: it’s void.

Symbol’s value as variable is void: x
(let ((x 2))
(let ((x 3))
(makunbound ’x)) ; Void inner binding, then remove it.
x) ; Now outer let binding is visible.
= 2

A variable that has been made void with makunbound is indistinguishable from one that has
never received a value and has always been void.

You can use the function boundp to test whether a variable is currently void.

boundp variable Function
boundp returns t if variable (a symbol) is not void; more precisely, if its current binding
is not void. It returns nil otherwise.

(boundp ’abracadabra) ; Starts out void.
= nil

(let ((abracadabra 5)) ; Locally bind it.

(boundp ’abracadabra))

=t

(boundp ’abracadabra) ; Still globally void.
= nil

(setq abracadabra 5) ; Make it globally nonvoid.
= 5

(boundp ’abracadabra)
=t

Chapter 10: Variables 157

10.5 Defining Global Variables

You may announce your intention to use a symbol as a global variable with a definition, using

defconst or defvar.

In Emacs Lisp, definitions serve three purposes. First, they inform the user who reads the code
that certain symbols are intended to be used as variables. Second, they inform the Lisp system
of these things, supplying a value and documentation. Third, they provide information to utilities
such as etags and make-docfile, which create data bases of the functions and variables in a

program.

The difference between defconst and defvar is primarily a matter of intent, serving to inform
human readers of whether programs will change the variable. Emacs Lisp does not restrict the
ways in which a variable can be used based on defconst or defvar declarations. However, it also
makes a difference for initialization: defconst unconditionally initializes the variable, while defvar

initializes it only if it is void.

One would expect user option variables to be defined with defconst, since programs do not
change them. Unfortunately, this has bad results if the definition is in a library that is not preloaded:
defconst would override any prior value when the library is loaded. Users would like to be able
to set the option in their init files, and override the default value given in the definition. For this

reason, user options must be defined with defvar.

defvar symbol [value [doc-string]] Special Form
This special form informs a person reading your code that symbol will be used as a
variable that the programs are likely to set or change. It is also used for all user option
variables except in the preloaded parts of Emacs. Note that symbol is not evaluated;
the symbol to be defined must appear explicitly in the defvar.

If symbol already has a value (i.e., it is not void), value is not even evaluated, and
symbol’s value remains unchanged. If symbol is void and value is specified, it is eval-
uated and symbol is set to the result. (If value is not specified, the value of symbol is

not changed in any case.)

If symbol has a buffer-local binding in the current buffer, defvar sets the default value,

not the local value.

If the doc-string argument appears, it specifies the documentation for the variable.
(This opportunity to specify documentation is one of the main benefits of defining

158

GNU Emacs Lisp Reference Manual

the variable.) The documentation is stored in the symbol’s variable-documentation
property. The Emacs help functions (see Chapter 21 [Documentation|, page 375) look
for this property.

If the first character of doc-string is ‘*’, it means that this variable is considered to be
a user option. This affects commands such as set-variable and edit-options.

For example, this form defines foo but does not set its value:

(defvar foo)
= foo

The following example sets the value of bar to 23, and gives it a documentation string:

(defvar bar 23
"The normal weight of a bar.")
= bar

The following form changes the documentation string for bar, making it a user option,
but does not change the value, since bar already has a value. (The addition (1+ 23)
is not even performed.)

(defvar bar (1+ 23)
"+*The normal weight of a bar.")
= bar
bar
= 23

Here is an equivalent expression for the defvar special form:

(defvar symbol value doc-string)

(progn
(if (not (boundp ’symbol))
(setq symbol value))
(put ’symbol ’variable-documentation ’doc-string)
> symbol)

Chapter 10: Variables 159

The defvar form returns symbol, but it is normally used at top level in a file where its
value does not matter.

defconst symbol [value [doc-string]] Special Form
This special form informs a person reading your code that symbol has a global value,
established here, that will not normally be changed or locally bound by the execution
of the program. The user, however, may be welcome to change it. Note that symbol is
not evaluated; the symbol to be defined must appear explicitly in the defconst.

defconst always evaluates value and sets the global value of symbol to the result,
provided value is given. If symbol has a buffer-local binding in the current buffer,
defconst sets the default value, not the local value.

Please note: don’t use defconst for user option variables in libraries that are not
normally loaded. The user should be able to specify a value for such a variable in the
‘.emacs’ file, so that it will be in effect if and when the library is loaded later.

Here, pi is a constant that presumably ought not to be changed by anyone (attempts
by the Indiana State Legislature notwithstanding). As the second form illustrates,
however, this is only advisory.

(defconst pi 3 "Pi to one place.")
= pi

(setq pi 4)
= pi

pi
= 4

user-variable-p variable Function
This function returns t if variable is a user option, intended to be set by the user for
customization, nil otherwise. (Variables other than user options exist for the internal
purposes of Lisp programs, and users need not know about them.)

User option variables are distinguished from other variables by the first character of
the variable-documentation property. If the property exists and is a string, and its

first character is ‘*’, then the variable is a user option.

160 GNU Emacs Lisp Reference Manual

Note that if the defconst and defvar special forms are used while the variable has a local
binding, the local binding’s value is set, and the global binding is not changed. This would be
confusing. But the normal way to use these special forms is at top level in a file, where no local
binding should be in effect.

10.6 Accessing Variable Values

The usual way to reference a variable is to write the symbol which names it (see Section 8.2.2
[Symbol Forms], page 124). This requires you to specify the variable name when you write the
program. Usually that is exactly what you want to do. Occasionally you need to choose at run
time which variable to reference; then you can use symbol-value.

symbol-value symbol Function
This function returns the value of symbol. This is the value in the innermost local
binding of the symbol, or its global value if it has no local bindings.

(setq abracadabra 5)
= 5
(setq foo 9)
= 9
;5 Here the symbol abracadabra
3 is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value ’abracadabra))
= foo

;; Here the value of abracadabra,
53 which is foo,
3 is the symbol whose value is examined.
(let ((abracadabra ’foo0))
(symbol-value abracadabra))
= 9
(symbol-value ’abracadabra)
= 5

A void-variable error is signaled if symbol has neither a local binding nor a global

value.

Chapter 10: Variables 161

10.7 How to Alter a Variable Value

The usual way to change the value of a variable is with the special form setq. When you need

to compute the choice of variable at run time, use the function set.

setq [symbol form)]. .. Special Form
This special form is the most common method of changing a variable’s value. Each
symbol is given a new value, which is the result of evaluating the corresponding form.
The most-local existing binding of the symbol is changed.

The value of the setq form is the value of the last form.

(setq x (1+ 2))

= 3
X ; X now has a global value.
= 3
(let ((x 5))
(setq x 6) ; The local binding of x is set.
x)
= 6
X ; The global value is unchanged.
= 3

Note that the first form is evaluated, then the first symbol is set, then the second form

is evaluated, then the second symbol is set, and so on:

(setq x 10 ; Notice that x is set before
y (1+ x)) ; the value of y is computed.
= 11
set symbol value Function

This function sets symbol’s value to value, then returns value. Since set is a function,
the expression written for symbol is evaluated to obtain the symbol to be set.

The most-local existing binding of the variable is the binding that is set; shadowed
bindings are not affected. If symbol is not actually a symbol, a wrong-type-argument

error is signaled.

162 GNU Emacs Lisp Reference Manual

(set one 1)
Symbol’s value as variable is void: one
(set ’one 1)
=1
(set ’two ’one)
= one
(set two 2) ; two evaluates to symbol one.
= 2
one ; So it is one that was set.
= 2
(let ((omne 1)) ; This binding of one is set,
(set ’one 3) ; not the global value.
one)
= 3
one
= 2

Logically speaking, set is a more fundamental primitive that setq. Any use of setq
can be trivially rewritten to use set; setq could even be defined as a macro, given the
availability of set. However, set itself is rarely used; beginners hardly need to know
about it. It is needed only when the choice of variable to be set is made at run time.
For example, the command set-variable, which reads a variable name from the user
and then sets the variable, needs to use set.

Common Lisp note: in Common Lisp, set always changes the symbol’s
special value, ignoring any lexical bindings. In Emacs Lisp, all variables
and all bindings are special, so set always affects the most local existing
binding.

10.8 Scoping Rules for Variable Bindings

A given symbol foo may have several local variable bindings, established at different places
in the Lisp program, as well as a global binding. The most recently established binding takes

precedence over the others.

Local bindings in Emacs Lisp have indefinite scope and dynamic extent. Scope refers to where
textually in the source code the binding can be accessed. Indefinite scope means that any part of
the program can potentially access the variable binding. Extent refers to when, as the program is

Chapter 10: Variables 163

executing, the binding exists. Dynamic extent means that the binding lasts as long as the activation
of the construct that established it.

The combination of dynamic extent and indefinite scope is called dynamic scoping. By contrast,
most programming languages use lexical scoping, in which references to a local variable must be
textually within the function or block that binds the variable.

Common Lisp note: variables declared “special” in Common Lisp are dynamically
scoped like variables in Emacs Lisp.

10.8.1 Scope

Emacs Lisp uses indefinite scope for local variable bindings. This means that any function
anywhere in the program text might access a given binding of a variable. Consider the following
function definitions:

(defun binder (x) ; x is bound in binder.
(foo 5)) ; foo is some other function.
(defun user () ; x is used in user.
(list x))

In a lexically scoped language, the binding of x from binder would never be accessible in user,
because user is not textually contained within the function binder. However, in dynamically
scoped Emacs Lisp, user may or may not refer to the binding of x established in binder, depending

on circumstances:

e If we call user directly without calling binder at all, then whatever binding of x is found, it

cannot come from binder.

e If we define foo as follows and call binder, then the binding made in binder will be seen in
user:
(defun foo (lose)
(user))
e If we define foo as follows and call binder, then the binding made in binder will not be seen
in user:
(defun foo (x)
(user))
Here, when foo is called by binder, it binds x. (The binding in foo is said to shadow the one
made in binder.) Therefore, user will access the x bound by foo instead of the one bound by

binder.

164 GNU Emacs Lisp Reference Manual

10.8.2 Extent

Extent refers to the time during program execution that a variable name is valid. In Emacs
Lisp, a variable is valid only while the form that bound it is executing. This is called dynamic
extent. “Local” or “automatic” variables in most languages, including C and Pascal, have dynamic

extent.

One alternative to dynamic extent is indefinite extent. This means that a variable binding can
live on past the exit from the form that made the binding. Common Lisp and Scheme, for example,

support this, but Emacs Lisp does not.

To illustrate this, the function below, make-add, returns a function that purports to add n to
its own argument m. This would work in Common Lisp, but it does not work as intended in Emacs
Lisp, because after the call to make-add exits, the variable n is no longer bound to the actual

argument 2.

(defun make-add (n)
(function (lambda (m) (+ n m)))) ; Return a function.
= make-add
(fset ’add2 (make-add 2)) ; Define function add?2
; with (make-add 2).
= (lambda (m) (+ n m))
(add2 4) ; Try to add 2 to 4.
Symbol’s value as variable is void: n

10.8.3 Implementation of Dynamic Scoping

A simple sample implementation (which is not how Emacs Lisp actually works) may help you
understand dynamic binding. This technique is called deep binding and was used in early Lisp

Systems.

Suppose there is a stack of bindings: variable-value pairs. At entry to a function or to a let
form, we can push bindings on the stack for the arguments or local variables created there. We can
pop those bindings from the stack at exit from the binding construct.

We can find the value of a variable by searching the stack from top to bottom for a binding
for that variable; the value from that binding is the value of the variable. To set the variable, we

search for the current binding, then store the new value into that binding.

Chapter 10: Variables 165

As you can see, a function’s bindings remain in effect as long as it continues execution, even
during its calls to other functions. That is why we say the extent of the binding is dynamic. And
any other function can refer to the bindings, if it uses the same variables while the bindings are in
effect. That is why we say the scope is indefinite.

The actual implementation of variable scoping in GNU Emacs Lisp uses a technique called
shallow binding. Each variable has a standard place in which its current value is always found—the

value cell of the symbol.

In shallow binding, setting the variable works by storing a value in the value cell. When a new
local binding is created, the local value is stored in the value cell, and the old value (belonging to
a previous binding) is pushed on a stack. When a binding is eliminated, the old value is popped
off the stack and stored in the value cell.

We use shallow binding because it has the same results as deep binding, but runs faster, since
there is never a need to search for a binding.

10.8.4 Proper Use of Dynamic Scoping

Binding a variable in one function and using it in another is a powerful technique, but if used
without restraint, it can make programs hard to understand. There are two clean ways to use this
technique:

e Use or bind the variable only in a few related functions, written close together in one file. Such
a variable is used for communication within one program.

You should write comments to inform other programmers that they can see all uses of the
variable before them, and to advise them not to add uses elsewhere.

e Give the variable a well-defined, documented meaning, and make all appropriate functions refer
to it (but not bind it or set it) wherever that meaning is relevant. For example, the variable
case-fold-search is defined as “non-nil means ignore case when searching”; various search
and replace functions refer to it directly or through their subroutines, but do not bind or set
it.

Then you can bind the variable in other programs, knowing reliably what the effect will be.

166 GNU Emacs Lisp Reference Manual

10.9 Buffer-Local Variables

Global and local variable bindings are found in most programming languages in one form or
another. Emacs also supports another, unusual kind of variable binding: buffer-local bindings,
which apply only to one buffer. Emacs Lisp is meant for programming editing commands, and
having different values for a variable in different buffers is an important customization method.

10.9.1 Introduction to Buffer-Local Variables

A buffer-local variable has a buffer-local binding associated with a particular buffer. The binding
is in effect when that buffer is current; otherwise, it is not in effect. If you set the variable while
a buffer-local binding is in effect, the new value goes in that binding, so the global binding is

unchanged; this means that the change is visible in that buffer alone.

A variable may have buffer-local bindings in some buffers but not in others. The global binding
is shared by all the buffers that don’t have their own bindings. Thus, if you set the variable in a
buffer that does not have a buffer-local binding for it, the new value is visible in all buffers except
those with buffer-local bindings. (Here we are assuming that there are no let-style local bindings

to complicate the issue.)

The most common use of buffer-local bindings is for major modes to change variables that
control the behavior of commands. For example, C mode and Lisp mode both set the variable
paragraph-start to specify that only blank lines separate paragraphs. They do this by making
the variable buffer-local in the buffer that is being put into C mode or Lisp mode, and then setting

it to the new value for that mode.

The usual way to make a buffer-local binding is with make-local-variable, which is what
major mode commands use. This affects just the current buffer; all other buffers (including those

yet to be created) continue to share the global value.

A more powerful operation is to mark the variable as automatically buffer-local by calling make-
variable-buffer-local. You can think of this as making the variable local in all buffers, even
those yet to be created. More precisely, the effect is that setting the variable automatically makes
the variable local to the current buffer if it is not already so. All buffers start out by sharing the
global value of the variable as usual, but any setq creates a buffer-local binding for the current
buffer. The new value is stored in the buffer-local binding, leaving the (default) global binding
untouched. The global value can no longer be changed with setq; you need to use setq-default
to do that.

Chapter 10: Variables 167

Warning: when a variable has local values in one or more buffers, you can get Emacs very
confused by binding the variable with let, changing to a different current buffer in which a different
binding is in effect, and then exiting the let. To preserve your sanity, it is wise to avoid such
situations. If you use save-excursion around each piece of code that changes to a different

current buffer, you will not have this problem. Here is an example of incorrect code:

(setq foo ’b)
(set-buffer "a")
(make-local-variable ’foo)
(setq foo ’a)
(let ((foo ’temp))
(set-buffer "b")
)
foo = ’a ; The old buffer-local value from buffer ‘a’
; is now the default value.
(set-buffer "a"
foo = ’temp ; The local value that should be gone
; is now the buffer-local value in buffer ‘a’.

But save-excursion as shown here avoids the problem:

(let ((foo ’temp))
(save-excursion
(set-buffer "b")
L))

Local variables in a file you edit are also represented by buffer-local bindings for the buffer that
holds the file within Emacs. See Section 20.1.3 [Auto Major Mode], page 360.

10.9.2 Creating and Destroying Buffer-local Bindings

make-local-variable variable Command
This function creates a buffer-local binding in the current buffer for variable (a symbol).
Other buffers are not affected. The value returned is variable.

The buffer-local value of variable starts out as the same value variable previously had.

If variable was void, it remains void.

168 GNU Emacs Lisp Reference Manual

;3 In buffer ‘b1’:

(setq foo 5) ; Affects all buffers.
= 5

(make-local-variable ’foo) ; Now it is local in ‘b1’.
= foo

foo ; That did not change
= 5 ; the value.

(setq foo 6) ; Change the value
= 6 ; in ‘b1’.

foo
= 6

;5 In buffer ‘b2’, the value hasn’t changed.
(save—excursion
(set-buffer "b2")
foo)
= 5

make-variable-buffer-local variable Command
This function marks variable (a symbol) automatically buffer-local, so that any attempt
to set it will make it local to the current buffer at the time.

The value returned is variable.

buffer-local-variables &optional buffer Function
This function tells you what the buffer-local variables are in buffer buffer. It returns an
association list (see Section 5.8 [Association Lists|, page 96) in which each association
contains one buffer-local variable and its value. If buffer is omitted, the current buffer
is used.

(setq 1lcl (buffer-local-variables))
= ((fill-column . 75)
(case-fold-search . t)

(mark-ring #<marker at 5454 in buffers.texi>)
(require-final-newline . t))

Note that storing new values into the CDRs of the elements in this list does not change
the local values of the variables.

Chapter 10: Variables 169

kill-local-variable variable Command
This function deletes the buffer-local binding (if any) for variable (a symbol) in the
current buffer. As a result, the global (default) binding of variable becomes visible in
this buffer. Usually this results in a change in the value of variable, since the global

value is usually different from the buffer-local value just eliminated.

It is possible to kill the local binding of a variable that automatically becomes local
when set. This causes the variable to show its global value in the current buffer.

However, if you set the variable again, this will once again create a local value.

kill-local-variable returns variable.

kill-all-local-variables Function
This function eliminates all the buffer-local variable bindings of the current buffer
except for variables marker as “permanent”. As a result, the buffer will see the default

values of most variables.

This function also resets certain other information pertaining to the buffer: its local
keymap is set to nil, its syntax table is set to the value of standard-syntax-table,

and its abbrev table is set to the value of fundamental-mode-abbrev-table.

Every major mode command begins by calling this function, which has the effect of
switching to Fundamental mode and erasing most of the effects of the previous major
mode. To ensure that this does its job, the variables that major modes set should not

be marked permanent.

kill-all-local-variables returns nil.

A local variable is permanent if the variable name (a symbol) has a permanent-local property
that is non-nil. Permanent locals are appropriate for data pertaining to where the file came from

or how to save it, rather than with how to edit the contents.

10.9.3 The Default Value of a Buffer-Local Variable

The global value of a variable with buffer-local bindings is also called the default value, because

it is the value that is in effect except when specifically overridden.

170 GNU Emacs Lisp Reference Manual

The functions default-value and setq-default allow you to access and change the default
value regardless of whether the current buffer has a buffer-local binding. For example, you could
use setq-default to change the default setting of paragraph-start for most buffers; and this
would work even when you are in a C or Lisp mode buffer which has a buffer-local value for this
variable.

The special forms defvar and defconst also set the default value (if they set the variable at
all), rather than any local value.

default-value symbol Function
This function returns symbol’s default value. This is the value that is seen in buffers
that do not have their own values for this variable. If symbol is not buffer-local, this
is equivalent to symbol-value (see Section 10.6 [Accessing Variables|, page 160).

default-boundp variable Function
The function default-boundp tells you whether variable’s default value is nonvoid. If
(default-boundp ’foo) returns nil, then (default-value ’foo) would get an error.

default-boundp is to default-value as boundp is to symbol-value.

setq-default symbol value Special Form
This sets the default value of symbol to value. symbol is not evaluated, but value is.
The value of the setq-default form is value.

If a symbol is not buffer-local for the current buffer, and is not marked automatically
buffer-local, this has the same effect as setq. If symbol is buffer-local for the current
buffer, then this changes the value that other buffers will see (as long as they don’t
have a buffer-local value), but not the value that the current buffer sees.

;3 In buffer ‘foo’:
(make-local-variable ’local)
= local
(setq local ’value-in-foo)
= value-in-foo
(setq-default local ’new-default)
= new-default
local
= value-in-foo

Chapter 10: Variables 171

(default-value ’local)
= new-default
;3 In (the new) buffer ‘bar’:
local
= new-default
(default-value ’local)
= new-default
(setq local ’another-default)
= another-default
(default-value ’local)
= another-default
;3 Back in buffer ‘foo’:
local
= value-in-foo
(default-value ’local)
= another-default

set-default symbol value Function
This function is like setq-default, except that symbol is evaluated.

(set-default (car ’(a b c)) 23)
= 23

(default-value ’a)
= 23

172 GNU Emacs Lisp Reference Manual

Chapter 11: Functions 173

11 Functions

A Lisp program is composed mainly of Lisp functions. This chapter explains what functions

are, how they accept arguments, and how to define them.

11.1 What Is a Function?

In a general sense, a function is a rule for carrying on a computation given several values called

arguments. The result of the computation is called the value of the function. The computation can

also have side effects: lasting changes in the values of variables or the contents of data structures.

Here are important terms for functions in Emacs Lisp and for other function-like objects.

function

primitive

In Emacs Lisp, a function is anything that can be applied to arguments in a Lisp
program. In some cases, we use it more specifically to mean a function written in Lisp.
Special forms and macros are not functions.

A primitive is a function callable from Lisp that is written in C, such as car or append.
These functions are also called built-in functions or subrs. (Special forms are also
considered primitives.)

Usually the reason that a function is a primitives is because it is fundamental, or pro-
vides a low-level interface to operating system services, or because it needs to run fast.
Primitives can be modified or added only by changing the C sources and recompiling
the editor. See Section B.4 [Writing Emacs Primitives], page 698.

lambda expression

A lambda expression is a function written in Lisp. These are described in the following
section.

special form

macro

A special form is a primitive that is like a function but does not evaluate all of its
arguments in the usual way. It may evaluate only some of the arguments, or may
evaluate them in an unusual order, or several times. Many special forms are described
in Chapter 9 [Control Structures], page 131.

A macro is a construct defined in Lisp by the programmer. It differs from a function
in that it translates a Lisp expression that you write into an equivalent expression to
be evaluated instead of the original expression. See Chapter 12 [Macros]|, page 193, for
how to define and use macros.

174 GNU Emacs Lisp Reference Manual

command A command is an object that command-execute can invoke; it is a possible definition

for a key sequence. Some functions are commands; a function written in Lisp is a com-
mand if it contains an interactive declaration (see Section 18.2 [Defining Commands],
page 290). Such a function can be called from Lisp expressions like other functions; in
this case, the fact that the function is a command makes no difference.

Strings are commands also, even though they are not functions. A symbol is a command
if its function definition is a command; such symbols can be invoked with M-x. The
symbol is a function as well if the definition is a function. See Section 18.1 [Command
Overview|, page 289.

keystroke command

A keystroke command is a command that is bound to a key sequence (typically one
to three keystrokes). The distinction is made here merely to avoid confusion with
the meaning of “command” in non-Emacs editors; for programmers, the distinction is
normally unimportant.

byte-code function

A byte-code function is a function that has been compiled by the byte compiler. See
Section 2.3.13 [Byte-Code Type], page 32.

subrp object Function

This function returns t if object is a built-in function (i.e. a Lisp primitive).

(subrp ’message) ; message is a symbol,
= nil ; not a subr object.
(subrp (symbol-function ’message))
=t

byte-code-function-p object Function

This function returns t if object is a byte-code function. For example:

(byte-code-function-p (symbol-function ’next-line))
=t

11.2 Lambda Expressions

A function written in Lisp is a list that looks like this:

Chapter 11: Functions 175

(lambda (arg-variables...)
[documentation-string]
[interactive-declaration]
body-forms. . .)

(Such a list is called a lambda expression for historical reasons, even though it is not really an
expression at all—it is not a form that can be evaluated meaningfully.)

11.2.1 Components of a Lambda Expression

The first element of a lambda expression is always the symbol lambda. This indicates that the
list represents a function. The reason functions are defined to start with lambda is so that other
lists, intended for other uses, will not accidentally be valid as functions.

The second element is a list of argument variable names (symbols). This is called the lambda
list. When a Lisp function is called, the argument values are matched up against the variables in
the lambda list, which are given local bindings with the values provided. See Section 10.3 [Local
Variables|, page 152.

The documentation string is an actual string that serves to describe the function for the Emacs
help facilities. See Section 11.2.4 [Function Documentation], page 178.

The interactive declaration is a list of the form (interactive code-string). This declares how
to provide arguments if the function is used interactively. Functions with this declaration are called
commands; they can be called using M-x or bound to a key. Functions not intended to be called in
this way should not have interactive declarations. See Section 18.2 [Defining Commands], page 290,
for how to write an interactive declaration.

The rest of the elements are the body of the function: the Lisp code to do the work of the
function (or, as a Lisp programmer would say, “a list of Lisp forms to evaluate”). The value
returned by the function is the value returned by the last element of the body.

11.2.2 A Simple Lambda-Expression Example

Consider for example the following function:

(lambda (a b c) (+ a b c))

176 GNU Emacs Lisp Reference Manual

We can call this function by writing it as the CAR of an expression, like this:

((lambda (a b c) (+ a b c))
12 3)

The body of this lambda expression is evaluated with the variable a bound to 1, b bound to 2, and
¢ bound to 3. Evaluation of the body adds these three numbers, producing the result 6; therefore,
this call to the function returns the value 6.

Note that the arguments can be the results of other function calls, as in this example:

((lambda (a b c) (+ a b c))
1 (x23) (-5 4))

Here all the arguments 1, (* 2 3), and (- 5 4) are evaluated, left to right. Then the lambda
expression is applied to the argument values 1, 6 and 1 to produce the value 8.

It is not often useful to write a lambda expression as the CAR of a form in this way. You can get
the same result, of making local variables and giving them values, using the special form let (see
Section 10.3 [Local Variables|, page 152). And let is clearer and easier to use. In practice, lambda
expressions are either stored as the function definitions of symbols, to produce named functions,
or passed as arguments to other functions (see Section 11.7 [Anonymous Functions|, page 185).

However, calls to explicit lambda expressions were very useful in the old days of Lisp, before the
special form let was invented. At that time, they were the only way to bind and initialize local
variables.

11.2.3 Advanced Features of Argument Lists

Our simple sample function, (lambda (a b c) (+ ab c)), specifies three argument variables,
so it must be called with three arguments: if you try to call it with only two arguments or four
arguments, you get a wrong-number-of-arguments error.

It is often convenient to write a function that allows certain arguments to be omitted. For
example, the function substring accepts three arguments—a string, the start index and the end
index—but the third argument defaults to the end of the string if you omit it. It is also convenient
for certain functions to accept an indefinite number of arguments, as the functions and and + do.

Chapter 11: Functions 177

To specify optional arguments that may be omitted when a function is called, simply include
the keyword &optional before the optional arguments. To specify a list of zero or more extra
arguments, include the keyword &rest before one final argument.

Thus, the complete syntax for an argument list is as follows:

(required-vars. . .
[£optional optional-vars. .]
[&rest rest-var])

The square brackets indicate that the &optional and &rest clauses, and the variables that follow
them, are optional.

A call to the function requires one actual argument for each of the required-vars. There may
be actual arguments for zero or more of the optional-vars, and there cannot be any more actual
arguments than these unless &rest exists. In that case, there may be any number of extra actual
arguments.

If actual arguments for the optional and rest variables are omitted, then they always default
to nil. However, the body of the function is free to consider nil an abbreviation for some other
meaningful value. This is what substring does; nil as the third argument means to use the length
of the string supplied. There is no way for the function to distinguish between an explicit argument
of nil and an omitted argument.

Common Lisp note: Common Lisp allows the function to specify what default value to
use when an optional argument is omitted; GNU Emacs Lisp always uses nil.

For example, an argument list that looks like this:

(a b &optional c d &rest e)

binds a and b to the first two actual arguments, which are required. If one or two more arguments
are provided, ¢ and d are bound to them respectively; any arguments after the first four are collected
into a list and e is bound to that list. If there are only two arguments, c is nil; if two or three
arguments, d is nil; if four arguments or fewer, e is nil.

There is no way to have required arguments following optional ones—it would not make sense.
To see why this must be so, suppose that ¢ in the example were optional and d were required. If

178 GNU Emacs Lisp Reference Manual

three actual arguments are given; then which variable would the third argument be for? Similarly,
it makes no sense to have any more arguments (either required or optional) after a &rest argument.

Here are some examples of argument lists and proper calls:

((lambda (n) (1+ n)) ; One required:
1) ; requires exactly one argument.
= 2
((lambda (n &optional nl) ; One required and one optional:
(if n1 (+ n n1) (1+ n))) ; 1 or 2 arguments.
12
= 3
((lambda (n &rest ns) ; One required and one rest:
(+ n (apply ’+ ns))) ; 1 or more arguments.
12345)
= 15

11.2.4 Documentation Strings of Functions

A lambda expression may optionally have a documentation string just after the lambda list.
This string does not affect execution of the function; it is a kind of comment, but a systematized
comment which actually appears inside the Lisp world and can be used by the Emacs help facilities.
See Chapter 21 [Documentation], page 375, for how the documentation-string is accessed.

It is a good idea to provide documentation strings for all commands, and for all other functions
in your program that users of your program should know about; internal functions might as well
have only comments, since comments don’t take up any room when your program is loaded.

The first line of the documentation string should stand on its own, because apropos displays
just this first line. It should consist of one or two complete sentences that summarize the function’s
purpose.

The start of the documentation string is usually indented, but since these spaces come before
the starting double-quote, they are not part of the string. Some people make a practice of indenting
any additional lines of the string so that the text lines up. This is a mistake. The indentation of the
following lines is inside the string; what looks nice in the source code will look ugly when displayed
by the help commands.

You may wonder how the documentation string could be optional, since there are required
components of the function that follow it (the body). Since evaluation of a string returns that

Chapter 11: Functions 179

string, without any side effects, it has no effect if it is not the last form in the body. Thus, in
practice, there is no confusion between the first form of the body and the documentation string; if
the only body form is a string then it serves both as the return value and as the documentation.

11.3 Naming a Function

In most computer languages, every function has a name; the idea of a function without a name
is nonsensical. In Lisp, a function in the strictest sense has no name. It is simply a list whose first
element is lambda, or a primitive subr-object.

However, a symbol can serve as the name of a function. This happens when you put the function
in the symbol’s function cell (see Section 7.1 [Symbol Components|, page 109). Then the symbol
itself becomes a valid, callable function, equivalent to the list or subr-object that its function cell
refers to. The contents of the function cell are also called the symbol’s function definition. When
the evaluator finds the function definition to use in place of the symbol, we call that symbol function
indirection; see Section 8.2.4 [Function Indirection|, page 124.

In practice, nearly all functions are given names in this way and referred to through their names.
For example, the symbol car works as a function and does what it does because the primitive subr-
object #<subr car> is stored in its function cell.

We give functions names because it is more convenient to refer to them by their names in other
functions. For primitive subr-objects such as #<subr car>, names are the only way you can refer
to them: there is no read syntax for such objects. For functions written in Lisp, the name is more
convenient to use in a call than an explicit lambda expression. Also, a function with a name can
refer to itself—it can be recursive. Writing the function’s name in its own definition is much more
convenient than making the function definition point to itself (something that is not impossible but

that has various disadvantages in practice).

Functions are often identified with the symbols used to name them. For example, we often speak
of “the function car”, not distinguishing between the symbol car and the primitive subr-object

that is its function definition. For most purposes, there is no need to distinguish.

Even so, keep in mind that a function need not have a unique name. While a given function
object usually appears in the function cell of only one symbol, this is just a matter of convenience.
It is easy to store it in several symbols using fset; then each of the symbols is equally well a name
for the same function.

180 GNU Emacs Lisp Reference Manual

A symbol used as a function name may also be used as a variable; these two uses of a symbol

are independent and do not conflict.

11.4 Defining Named Functions

We usually give a name to a function when it is first created. This is called defining a function,

and it is done with the defun special form.

defun name argument-list body-forms Special Form
defun is the usual way to define new Lisp functions. It defines the symbol name as a
function that looks like this:

(lambda argument-list . body-forms)

This lambda expression is stored in the function cell of name. The value returned by

evaluating the defun form is name, but usually we ignore this value.

As described previously (see Section 11.2 [Lambda Expressions], page 174), argument-
list is a list of argument names and may include the keywords &optional and &rest.
Also, the first two forms in body-forms may be a documentation string and an inter-

active declaration.

Note that the same symbol name may also be used as a global variable, since the value
cell is independent of the function cell.

Here are some examples:

(defun foo () 5)
= foo
(foo)
= 5
(defun bar (a &optional b &rest c)
(list a b ¢))
= bar
(bar 1 2 3 4 5)
= (12 (345))

Chapter 11: Functions 181

(bar 1)
= (1 nil nil)
(bar)
Wrong number of arguments.
(defun capitalize-backwards ()
"Upcase the last letter of a word."
(interactive)
(backward-word 1)
(forward-word 1)
(backward-char 1)
(capitalize-word 1))
= capitalize-backwards

Be careful not to redefine existing functions unintentionally. defun redefines even
primitive functions such as car without any hesitation or notification. Redefining a
function already defined is often done deliberately, and there is no way to distinguish
deliberate redefinition from unintentional redefinition.

11.5 Calling Functions

Defining functions is only half the battle. Functions don’t do anything until you call them, i.e.,
tell them to run. This process is also known as invocation.

The most common way of invoking a function is by evaluating a list. For example, evaluating
the list (concat "a" "b") calls the function concat. See Chapter 8 [Evaluation], page 119, for a
description of evaluation.

When you write a list as an expression in your program, the function name is part of the program.
This means that the choice of which function to call is made when you write the program. Usually
that’s just what you want. Occasionally you need to decide at run time which function to call.

Then you can use the functions funcall and apply.

funcall function &rest arguments Function
funcall calls function with arguments, and returns whatever function returns.

Since funcall is a function, all of its arguments, including function, are evaluated
before funcall is called. This means that you can use any expression to obtain the

182 GNU Emacs Lisp Reference Manual

function to be called. It also means that funcall does not see the expressions you
write for the arguments, only their values. These values are not evaluated a second
time in the act of calling function; funcall enters the normal procedure for calling a
function at the place where the arguments have already been evaluated.

The argument function must be either a Lisp function or a primitive function. Special
forms and macros are not allowed, because they make sense only when given the “un-
evaluated” argument expressions. funcall cannot provide these because, as we saw
above, it never knows them in the first place.

(setq £ ’list)

= list
(funcall f ’x ’y ’z)
= (xy 2)
(funcall f ’x ’y ’(2))
= (xy (=)

(funcall ’and t nil)
Invalid function: #<subr and>

Compare this example with that of apply.

apply function &rest arguments Function
apply calls function with arguments, just like funcall but with one difference: the last
of arguments is a list of arguments to give to function, rather than a single argument.
We also say that this list is appended to the other arguments.

apply returns the result of calling function. As with funcall, function must either be
a Lisp function or a primitive function; special forms and macros do not make sense in

apply.

(setq £ ’list)
= list
(apply f ’x ’y ’z)
Wrong type argument: listp, z
(apply ’+ 1 2 ’(3 4))
= 10
(apply ’+ (1 2 3 4))
= 10

Chapter 11: Functions 183

(apply ’append ’((a b c) nil (x y z) nil))
= (abcxyz)

An interesting example of using apply is found in the description of mapcar; see the

following section.

It is common for Lisp functions to accept functions as arguments or find them in data structures
(especially in hook variables and property lists) and call them using funcall or apply. Functions
that accept function arguments are often called functionals.

Sometimes, when you call such a function, it is useful to supply a no-op function as the argument.

Here are two different kinds of no-op function:

identity arg Function
This function returns arg and has no side effects.

ignore &rest args Function
This function ignores any arguments and returns nil.

11.6 Mapping Functions

A mapping function applies a given function to each element of a list or other collection. Emacs
Lisp has three such functions; mapcar and mapconcat, which scan a list, are described here. For

the third mapping function, mapatoms, see Section 7.3 [Creating Symbols], page 112.

mapcar function sequence Function
mapcar applies function to each element of sequence in turn. The results are made into

a nil-terminated list.

The argument sequence may be a list, a vector or a string. The result is always a list.
The length of the result is the same as the length of sequence.

184 GNU Emacs Lisp Reference Manual

For example:

(mapcar ’car ’((a b) (c d) (e £)))
= (ace)
(mapcar ’1+ [1 2 3])
= (234
(mapcar ’char-to-string "abc")
= ("a" "b" "c")
;3 Call each function in my-hooks.
(mapcar ’funcall my-hooks)
(defun mapcar* (f &rest args)
"Apply FUNCTION to successive cars of all ARGS, until one ends.
Return the list of results."
;3 If no list is exhausted,
(if (not (memq ’nil args))
;3 Apply function to CARs.
(cons (apply f (mapcar ’car args))
(apply ’mapcar* f
;3 Recurse for rest of elements.
(mapcar ’cdr args)))))
(mapcar* ’cons ’(a b c) ’(1 2 3 4))
= ((a. 1) .2 (c. 3N

mapconcat function sequence separator Function
mapconcat applies function to each element of sequence: the results, which must be
strings, are concatenated. Between each pair of result strings, mapconcat inserts the
string separator. Usually separator contains a space or comma or other suitable punc-

tuation.

The argument function must be a function that can take one argument and returns a

string.

(mapconcat ’symbol-name
’(The cat in the hat)
n u)
= "The cat in the hat"

Chapter 11: Functions 185

(mapconcat (function (lambda (x) (format "%c" (1+ x))))
"HAL-8000"

iy
= "IBM.9111"

11.7 Anonymous Functions

In Lisp, a function is a list that starts with lambda (or alternatively a primitive subr-object);
names are “extra”. Although usually functions are defined with defun and given names at the
same time, it is occasionally more concise to use an explicit lambda expression—an anonymous
function. Such a list is valid wherever a function name is.

Any method of creating such a list makes a valid function. Even this:

(setq silly (append ’(lambda (x)) (list (list ’+ (x 3 4) ’x))))
= (lambda (x) (+ 12 x))

This computes a list that looks like (lambda (x) (+ 12 x)) and makes it the value (not the function

definition!) of silly.
Here is how we might call this function:

(funcall silly 1)
= 13

(It does not work to write (silly 1), because this function is not the function definition of silly.

We have not given silly any function definition, just a value as a variable.)

Most of the time, anonymous functions are constants that appear in your program. For example,
you might want to pass one as an argument to the function mapcar, which applies any given function
to each element of a list. Here we pass an anonymous function that multiplies a number by two:

(defun double-each (list)
(mapcar ’(lambda (x) (* 2 x)) 1list))
= double-each
(double-each ’(2 11))
= (4 22)

186 GNU Emacs Lisp Reference Manual

In such cases, we usually use the special form function instead of simple quotation to quote the

anonymous function.

function function-object Special Form
This special form returns function-object without evaluating it. In this, it is equivalent
to quote. However, it serves as a note to the Emacs Lisp compiler that function-object
is intended to be used only as a function, and therefore can safely be compiled. See
Section 8.3 [Quoting], page 129, for comparison.

Using function instead of quote makes a difference inside a function or macro that you are
going to compile. For example:

(defun double-each (list)
(mapcar (function (lambda (x) (* 2 x))) list))
= double-each
(double-each ’(2 11))
= (4 22)

If this definition of double-each is compiled, the anonymous function is compiled as well. By
contrast, in the previous definition where ordinary quote is used, the argument passed to mapcar

is the precise list shown:

(lambda (arg) (+ arg 5))

The Lisp compiler cannot assume this list is a function, even though it looks like one, since it does
not know what mapcar does with the list. Perhaps mapcar will check that the CAR of the third
element is the symbol +! The advantage of function is that it tells the compiler to go ahead and
compile the constant function.

We sometimes write function instead of quote when quoting the name of a function, but this
usage is just a sort of comment.

(function symbol) = (quote symbol) = ’symbol

See documentation in Section 21.2 [Accessing Documentation], page 376, for a realistic example

using function and an anonymous function.

Chapter 11: Functions 187

11.8 Accessing Function Cell Contents

The function definition of a symbol is the object stored in the function cell of the symbol. The
functions described here access, test, and set the function cell of symbols.

symbol-function symbol Function
This returns the object in the function cell of symbol. If the symbol’s function cell is

void, a void-function error is signaled.
This function does not check that the returned object is a legitimate function.

(defun bar (n) (+ n 2))

= bar
(symbol-function ’bar)

= (lambda (n) (+ n 2))
(fset ’baz ’bar)

= bar
(symbol-function ’baz)

= bar

If you have never given a symbol any function definition, we say that that symbol’s function
cell is void. In other words, the function cell does not have any Lisp object in it. If you try to call

such a symbol as a function, it signals a void-function error.

Note that void is not the same as nil or the symbol void. The symbols nil and void are Lisp
objects, and can be stored into a function cell just as any other object can be (and they can be valid
functions if you define them in turn with defun); but nil or void is an object. A void function

cell contains no object whatsoever.

You can test the voidness of a symbol’s function definition with fboundp. After you have given

a symbol a function definition, you can make it void once more using fmakunbound.

fboundp symbol Function
Returns t if the symbol has an object in its function cell, nil otherwise. It does not

check that the object is a legitimate function.

188 GNU Emacs Lisp Reference Manual

fmakunbound symbol Function
This function makes symbol’s function cell void, so that a subsequent attempt to access

this cell will cause a void-function error. (See also makunbound, in Section 10.3 [Local
Variables|, page 152.)

(defun foo (x) x)
= X
(fmakunbound ’foo)
= X
(foo 1)
Symbol’s function definition is void: foo

fset symbol object Function
This function stores object in the function cell of symbol. The result is object. Normally

object should be a function or the name of a function, but this is not checked.
There are three normal uses of this function:

e Copying one symbol’s function definition to another. (In other words, making an
alternate name for a function.)

e Giving a symbol a function definition that is not a list and therefore cannot be
made with defun. See Section 8.2.3 [Classifying Lists], page 124, for an example
of this usage.

e In constructs for defining or altering functions. If defun were not a primitive, it

could be written in Lisp (as a macro) using fset.

Here are examples of the first two uses:

;3 Give first the same definition car has.
(fset ’first (symbol-function ’car))
= #<subr car>
(first (1 2 3))
=1

;5 Make the symbol car the function definition of xfirst.
(fset ’xfirst ’car)

= car
(xfirst > (1 2 3))

=1

Chapter 11: Functions 189

(symbol-function ’xfirst)
= car

(symbol-function (symbol-function ’xfirst))
= #<subr car>

;3 Define a named keyboard macro.
(fset ’kill-two-lines "\"u2\"k")
= u\AuQ\Aku

When writing a function that extends a previously defined function, the following idiom is often

used:

(fset ’o0ld-foo (symbol-function ’foo0))

(defun foo ()
"Just like old-foo, except more so."
(old-foo)

(more-so0))

This does not work properly if foo has been defined to autoload. In such a case, when foo calls
old-foo, Lisp attempts to define old-foo by loading a file. Since this presumably defines foo
rather than old-foo, it does not produce the proper results. The only way to avoid this problem
is to make sure the file is loaded before moving aside the old definition of foo.

See also the function indirect-function in Section 8.2.4 [Function Indirection]|, page 124.

11.9 Inline Functions

You can define an inline function by using defsubst instead of defun. An inline function works
just like an ordinary function except for one thing: when you compile a call to the function, the
function’s definition is open-coded into the caller.

Making a function inline makes explicit calls run faster. But it also has disadvantages. For one
thing, it reduces flexibility; if you change the definition of the function, calls already inlined still
use the old definition until you recompile them.

Another disadvantage is that making a large function inline can increase the size of compiled
code both in files and in memory. Since the advantages of inline functions are greatest for small

functions, you generally should not make large functions inline.

190 GNU Emacs Lisp Reference Manual

It’s possible to define a macro to expand into the same code that an inline function would
execute. But the macro would have a limitation: you can use it only explicitly—a macro cannot
be called with apply, mapcar and so on. Also, it takes some work to convert an ordinary function
into a macro. (See Chapter 12 [Macros|, page 193.) To convert it into an inline function is very
easy; simply replace defun with defsubst.

Inline functions can be used and open coded later on in the same file, following the definition,
just like macros.

Emacs versions prior to 19 did not have inline functions.

11.10 Other Topics Related to Functions

Here is a table of several functions that do things related to function calling and function
definitions. They are documented elsewhere, but we provide cross references here.

apply See Section 11.5 [Calling Functions], page 181.

autoload See Section 13.2 [Autoload], page 205.
call-interactively

See Section 18.3 [Interactive Call], page 294.
commandp See Section 18.3 [Interactive Call], page 294.
documentation

See Section 21.2 [Accessing Documentation], page 376.
eval See Section 8.1 [Eval], page 120.
funcall See Section 11.5 [Calling Functions|, page 181.

ignore See Section 11.5 [Calling Functions], page 181.

indirect-function
See Section 8.2.4 [Function Indirection], page 124.

interactive
See Section 18.2.1 [Using Interactive], page 290.

interactive-p
See Section 18.3 [Interactive Call], page 294.

mapatoms See Section 7.3 [Creating Symbols], page 112.

mapcar See Section 11.6 [Mapping Functions], page 183.

Chapter 11: Functions 191

mapconcat
See Section 11.6 [Mapping Functions], page 183.

undefined
See Section 19.8 [Key Lookup]|, page 340.

192 GNU Emacs Lisp Reference Manual

Chapter 12: Macros 193

12 Macros

Macros enable you to define new control constructs and other language features. A macro is
defined much like a function, but instead of telling how to compute a value, it tells how to compute
another Lisp expression which will in turn compute the value. We call this expression the expansion
of the macro.

Macros can do this because they operate on the unevaluated expressions for the arguments, not
on the argument values as functions do. They can therefore construct an expansion containing

these argument expressions or parts of them.

If you are using a macro to do something an ordinary function could do, just for the sake of

speed, consider using an inline function instead. See Section 11.9 [Inline Functions|, page 189.

12.1 A Simple Example of a Macro

Suppose we would like to define a Lisp construct to increment a variable value, much like the
++ operator in C. We would like to write (inc x) and have the effect of (setq x (1+ x)). Here’s

a macro definition that does the job:

(defmacro inc (var)
(1ist ’setq var (list ’1+ var)))

When this is called with (inc x), the argument var has the value x—not the value of x. The
body of the macro uses this to construct the expansion, which is (setq x (1+ x)). Once the macro
definition returns this expansion, Lisp proceeds to evaluate it, thus incrementing x.

12.2 Expansion of a Macro Call

A macro call looks just like a function call in that it is a list which starts with the name of the
macro. The rest of the elements of the list are the arguments of the macro.

Evaluation of the macro call begins like evaluation of a function call except for one crucial
difference: the macro arguments are the actual expressions appearing in the macro call. They
are not evaluated before they are given to the macro definition. By contrast, the arguments of a
function are results of evaluating the elements of the function call list.

194 GNU Emacs Lisp Reference Manual

Having obtained the arguments, Lisp invokes the macro definition just as a function is invoked.
The argument variables of the macro are bound to the argument values from the macro call, or to
a list of them in the case of a &rest argument. And the macro body executes and returns its value
just as a function body does.

The second crucial difference between macros and functions is that the value returned by the
macro body is not the value of the macro call. Instead, it is an alternate expression for computing
that value, also known as the expansion of the macro. The Lisp interpreter proceeds to evaluate
the expansion as soon as it comes back from the macro.

Since the expansion is evaluated in the normal manner, it may contain calls to other macros. It
may even be a call to the same macro, though this is unusual.

You can see the expansion of a given macro call by calling macroexpand.

macroexpand form &optional environment Function
This function expands form, if it is a macro call. If the result is another macro call, it is
expanded in turn, until something which is not a macro call results. That is the value
returned by macroexpand. If form is not a macro call to begin with, it is returned as

given.

Note that macroexpand does not look at the subexpressions of form (although some
macro definitions may do so). Even if they are macro calls themselves, macroexpand
does not expand them.

The function macroexpand does not expand calls to inline functions. Normally there
is no need for that, since a call to an inline function is no harder to understand than a

call to an ordinary function.

If environment is provided, it specifies an alist of macro definitions that shadow the
currently defined macros. This is used by byte compilation.

(defmacro inc (var)
(1ist ’setq var (list ’1+ wvar)))
= 1inc

(macroexpand ’(inc r))
= (setq r (1+ r))

Chapter 12: Macros 195

(defmacro inc2 (varl var2)
(1ist ’progn (list ’inc varl) (list ’inc var2)))
= 1inc2

(macroexpand ’(inc2 r s))
= (progn (inc r) (inc s)) ; inc not expanded here.

12.3 Macros and Byte Compilation

You might ask why we take the trouble to compute an expansion for a macro and then evaluate
the expansion. Why not have the macro body produce the desired results directly? The reason has
to do with compilation.

When a macro call appears in a Lisp program being compiled, the Lisp compiler calls the macro
definition just as the interpreter would, and receives an expansion. But instead of evaluating this
expansion, it compiles the expansion as if it had appeared directly in the program. As a result,
the compiled code produces the value and side effects intended for the macro, but executes at
full compiled speed. This would not work if the macro body computed the value and side effects
itself—they would be computed at compile time, which is not useful.

In order for compilation of macro calls to work, the macros must be defined in Lisp when the
calls to them are compiled. The compiler has a special feature to help you do this: if a file being
compiled contains a defmacro form, the macro is defined temporarily for the rest of the compilation
of that file. To use this feature, you must define the macro in the same file where it is used and
before its first use.

While byte-compiling a file, any require calls at top-level are executed. One way to ensure
that necessary macro definitions are available during compilation is to require the file that defines
them. See Section 13.4 [Features|, page 209.

12.4 Defining Macros

A Lisp macro is a list whose CAR is macro. Its CDR should be a function; expansion of the macro
works by applying the function (with apply) to the list of unevaluated argument-expressions from
the macro call.

196 GNU Emacs Lisp Reference Manual

It is possible to use an anonymous Lisp macro just like an anonymous function, but this is never
done, because it does not make sense to pass an anonymous macro to mapping functions such as
mapcar. In practice, all Lisp macros have names, and they are usually defined with the special

form defmacro.

defmacro name argument-list body-forms. . . Special Form
defmacro defines the symbol name as a macro that looks like this:

(macro lambda argument-list . body-forms)

This macro object is stored in the function cell of name. The value returned by evalu-
ating the defmacro form is name, but usually we ignore this value.

The shape and meaning of argument-list is the same as in a function, and the keywords
&rest and &optional may be used (see Section 11.2.3 [Argument List], page 176).
Macros may have a documentation string, but any interactive declaration is ignored

since macros cannot be called interactively.

12.5 Backquote

It could prove rather awkward to write macros of significant size, simply due to the number of
times the function 1list needs to be called. To make writing these forms easier, a macro ‘¢’ (often

called backquote) exists.

Backquote allows you to quote a list, but selectively evaluate elements of that list. In the
simplest case, it is identical to the special form quote (see Section 8.3 [Quoting], page 129). For
example, these two forms yield identical results:

(¢ (a list of (+ 2 3) elements))
= (a list of (+ 2 3) elements)

(quote (a list of (+ 2 3) elements))
= (a list of (+ 2 3) elements)

By inserting a special marker, ‘,’, inside of the argument to backquote, it is possible to evaluate

desired portions of the argument:

Chapter 12: Macros 197

(list ’a ’1list ’of (+ 2 3) ’elements)
= (a list of 5 elements)

(¢ (a list of (, (+ 2 3)) elements))
= (a list of 5 elements)

It is also possible to have an evaluated list spliced into the resulting list by using the special
marker ‘,@. The elements of the spliced list become elements at the same level as the other
elements of the resulting list. The equivalent code without using ¢ is often unreadable. Here are

some examples:

(setq some-list ’(2 3))
= (2 3)

(cons 1 (append some-list ’(4) some-list))
= (12342 3)

(“ (1 (,0 some-list) 4 (,@ some-list)))
= (1234223

(setq list ’(hack foo bar))
= (hack foo bar)

(cons ’use

(cons ’the

(cons ’words (append (cdr list) ’(as elements)))))
= (use the words foo bar as elements)

(¢ (use the words (,@ (cdr list)) as elements (,@ nil)))
= (use the words foo bar as elements)

The reason for (,@ nil) is to avoid a bug in Emacs version 18. The bug occurs when a call to

,@ is followed only by constant elements. Thus,

(¢ (use the words (,0@ (cdr list)) as elements))

would not work, though it really ought to. (,@ nil) avoids the problem by being a nonconstant
element that does not affect the result.

¢ list Macro
This macro returns list as quote would, except that the list is copied each time this
expression is evaluated, and any sublist of the form (, subexp) is replaced by the value
of subexp. Any sublist of the form (,@ listexp) is replaced by evaluating listexp and
splicing its elements into the containing list in place of this sublist. (A single sublist

can in this way be replaced by any number of new elements in the containing list.)

198 GNU Emacs Lisp Reference Manual

There are certain contexts in which ‘,” would not be recognized and should not be
used:

;3 Use of a ‘,’ expression as the CDR of a list.

(“(a. ¢ DY ; Not (a . 1)
= (a \, 1)

;3 Use of ¢, in a vector.

(¢ [a (¢ 1) cD) ; Not [a 1 c]
Wrong type argument

;3 Use of a‘,’ as the entire argument of *¢’.

G o2)) ; Not 2
= (\, 2)
Common Lisp note: in Common Lisp, ‘,” and ‘,@” are implemented as reader macros,

so they do not require parentheses. Emacs Lisp implements them as functions because
reader macros are not supported (to save space).

12.6 Common Problems Using Macros

The basic facts of macro expansion have all been described above, but there consequences are
often counterintuitive. This section describes some important consequences that can lead to trouble,
and rules to follow to avoid trouble.

12.6.1 Evaluating Macro Arguments Too Many Times

When defining a macro you must pay attention to the number of times the arguments will
be evaluated when the expansion is executed. The following macro (used to facilitate iteration)
illustrates the problem. This macro allows us to write a simple “for” loop such as one might find
in Pascal.

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop, e.g.,
(for i from 1 to 10 do (print i))."
(1ist ’let (1ist (list var init))
(cons ’while (cons (list ’<= var final)

(append body (list (list ’inc var)))))))
= for

Chapter 12: Macros 199

(for i from 1 to 3 do
(setq square (* i i))
(princ (format "\n%d %d" i square)))
N
(let ((i 1))
(while (<= i 3)
(setq square (* i i))

(princ (format "¥%d %d" i square))
(inc 1)))
=1 1
-2 4
-3 9
= nil

(The arguments from, to, and do in this macro are “syntactic sugar”; they are entirely ignored.
The idea is that you will write noise words (such as from, to, and do) in those positions in the
macro call.)

This macro suffers from the defect that final is evaluated on every iteration. If final is a constant,
this is not a problem. If it is a more complex form, say (long-complex-calculation x), this can
slow down the execution significantly. If final has side effects, executing it more than once is
probably incorrect.

A well-designed macro definition takes steps to avoid this problem by producing an expansion
that evaluates the argument expressions exactly once unless repeated evaluation is part of the
intended purpose of the macro. Here is a correct expansion for the for macro:

(let ((1i 1)
(max 3))
(while (<= i max)
(setq square (* i i))
(princ (format "%d %d" i square))
(inc 1)))

Here is a macro definition that creates this expansion:

200 GNU Emacs Lisp Reference Manual

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
(¢ (Qet (((, var) (, init))
(max (, final)))
(while (<= (, var) max)
(,@ body)
(inc (, var))))))

Unfortunately, this introduces another problem.

12.6.2 Local Variables in Macro Expansions

The new definition of for has a new problem: it introduces a local variable named max which

the user does not expect. This causes trouble in examples such as the following:

(let ((max 0))
(for x from 0 to 10 do
(let ((this (frob x)))
(if (< max this)
(setq max this)))))

The references to max inside the body of the for, which are supposed to refer to the user’s binding

of max, really access the binding made by for.

The way to correct this is to use an uninterned symbol instead of max (see Section 7.3 [Creating
Symbols], page 112). The uninterned symbol can be bound and referred to just like any other
symbol, but since it is created by for, we know that it cannot appear in the user’s program. Since
it is not interned, there is no way the user can put it into the program later. It will never appear
anywhere except where put by for. Here is a definition of for which works this way:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
(let ((tempvar (make-symbol "max")))
(Y (Qet (((, var) (, init))
((, tempvar) (, final)))
(while (<= (, var) (, tempvar))
(,@ body)
(inc (, var)))))))

Chapter 12: Macros 201

This creates an uninterned symbol named max and puts it in the expansion instead of the usual
interned symbol max that appears in expressions ordinarily.

12.6.3 Evaluating Macro Arguments in Expansion

Another problem can happen if you evaluate any of the macro argument expressions during the
computation of the expansion, such as by calling eval (see Section 8.1 [Eval], page 120). If the
argument is supposed to refer to the user’s variables, you may have trouble if the user happens to
use a variable with the same name as one of the macro arguments. Inside the macro body, the
macro argument binding is the most local binding of this variable, so any references inside the form
being evaluated do refer to it. Here is an example:

(defmacro foo (a)
(1ist ’setq (eval a) t))
= foo
(setq x ’b)
(foo x) — (setq b t)
= t ; and b has been set.
;3 but
(setq a ’b)
(foo a) — (setq ’b t) ; invalid!
Symbol’s value is void: b

It makes a difference whether the user types a or x, because a conflicts with the macro argument
variable a.

In general it is best to avoid calling eval in a macro definition at all.

12.6.4 How Many Times is the Macro Expanded?

Occasionally problems result from the fact that a macro call is expanded each time it is evaluated
in an interpreted function, but is expanded only once (during compilation) for a compiled function.
If the macro definition has side effects, they will work differently depending on how many times
the macro is expanded.

In particular, constructing objects is a kind of side effect. If the macro is called once, then the

objects are constructed only once. In other words, the same structure of objects is used each time

202 GNU Emacs Lisp Reference Manual

the macro call is executed. In interpreted operation, the macro is reexpanded each time, producing
a fresh collection of objects each time. Usually this does not matter—the objects have the same
contents whether they are shared or not. But if the surrounding program does side effects on the
objects, it makes a difference whether they are shared. Here is an example:

(defmacro new-object ()
(list ’quote (cons nil nil)))

(defun initialize (condition)
(let ((object (new-object)))
(if condition
(setcar object condition))
object))

If initialize is interpreted, a new list (nil) is constructed each time initialize is called. Thus,
no side effect survives between calls. If initialize is compiled, then the macro new-object is
expanded during compilation, producing a single “constant” (nil) that is reused and altered each
time initialize is called.

Chapter 13: Loading 203

13 Loading

Loading a file of Lisp code means bringing its contents into the Lisp environment in the form of
Lisp objects. Emacs finds and opens the file, reads the text, evaluates each form, and then closes
the file.

The load functions evaluate all the expressions in a file just as the eval-current-buffer func-
tion evaluates all the expressions in a buffer. The difference is that the load functions read and
evaluate the text in the file as found on disk, not the text in an Emacs buffer.

The loaded file must contain Lisp expressions, either as source code or, optionally, as byte-
compiled code. Each form in the file is called a top-level form. There is no special format for
the forms in a loadable file; any form in a file may equally well be typed directly into a buffer
and evaluated there. (Indeed, most code is tested this way.) Most often, the forms are function
definitions and variable definitions.

A file containing Lisp code is often called a library. Thus, the “Rmail library” is a file containing
code for Rmail mode. Similarly, a “Lisp library directory” is a directory of files containing Lisp
code.

13.1 How Programs Do Loading

There are several interface functions for loading. For example, the autoload function creates a
Lisp object that loads a file when it is evaluated (see Section 13.2 [Autoload], page 205). require
also causes files to be loaded (see Section 13.4 [Features]|, page 209). Ultimately, all these facilities
call the load function to do the work.

load filename &optional missing-ok nomessage nosuffix Function
This function finds and opens a file of Lisp code, evaluates all the forms in it, and closes
the file.

To find the file, 1oad first looks for a file named ‘filename.elc’, that is, for a file whose

name has ‘.elc’ appended. If such a file exists, it is loaded. But if there is no file
by that name, then load looks for a file whose name has ‘.el’ appended. If that file
exists, it is loaded. Finally, if there is no file by either name, load looks for a file

named filename with nothing appended, and loads it if it exists. (The load function is

204 GNU Emacs Lisp Reference Manual

not clever about looking at filename. In the perverse case of a file named ‘foo.el.el’,

evaluation of (load "foo.el") will indeed find it.)

If the optional argument nosuffix is non-nil, then the suffixes ‘.elc’ and ‘.el’ are not
tried. In this case, you must specify the precise file name you want.

If filename is a relative file name, such as ‘foo’ or ‘baz/foo.bar’, load searches for
the file using the variable load-path. It appends filename to each of the directories
listed in load-path, and loads the first file it finds whose name matches. The current
default directory is tried only if it is specified in load-path, where it is represented as
nil. All three possible suffixes are tried in the first directory in load-path, then all

three in the second directory in load-path, etc.

If you get a warning that ‘foo.elc’ is older than ‘foo.el’, it means you should consider
recompiling ‘foo.el’. See Chapter 14 [Byte Compilation|, page 213.

)

Messages like ‘Loading foo...’ and ‘Loading foo...done’ appear in the echo area

during loading unless nomessage is non-nil.

Any errors that are encountered while loading a file cause load to abort. If the load
was done for the sake of autoload, certain kinds of top-level forms, those which define
functions, are undone.

The error file-error is signaled (with ‘Cannot open load file filename’) if no file is

found. No error is signaled if missing-ok is non-nil—then load just returns nil.

load returns t if the file loads successfully.

load-path User Option
The value of this variable is a list of directories to search when loading files with
load. Each element is a string (which must be a directory name) or nil (which stands
for the current working directory). The value of load-path is initialized from the
environment variable EMACSLOADPATH, if it exists; otherwise it is set to the default

specified in ‘emacs/src/paths.h’ when Emacs is built.

The syntax of EMACSLOADPATH is the same as that of PATH; fields are separated by ‘:’,
and ‘.’ is used for the current default directory. Here is an example of how to set your
EMACSLOADPATH variable from a csh ‘.login’ file:

Chapter 13: Loading 205

setenv EMACSLOADPATH .:/user/bil/emacs:/usr/local/lib/emacs/lisp

Here is how to set it using sh:

export EMACSLOADPATH
EMACSLOADPATH=. : /user/bil/emacs:/usr/local/lib/emacs/1lisp

Here is an example of code you can place in a ‘.emacs’ file to add several directories
to the front of your default load-path:

(setq load-path
(append
(list nil
"/user/bil/emacs"
"/usr/local/lisplib")
load-path))

In this example, the path searches the current working directory first, followed then
by the ‘/user/bil/emacs’ directory and then by the ‘/usr/local/lisplib’ directory,
which are then followed by the standard directories for Lisp code.

When Emacs version 18 processes command options ‘-1’ or ‘-load’ which specify Lisp
libraries to be loaded, it temporarily adds the current directory to the front of load-
path so that files in the current directory can be specified easily. Newer Emacs versions
also find such files in the current directory, but without altering load-path.

load-in-progress Variable
This variable is non-nil if Emacs is in the process of loading a file, and it is nil
otherwise. This is how defun and provide determine whether a load is in progress, so
that their effect can be undone if the load fails.

To learn how load is used to build Emacs, see Section B.1 [Building Emacs]|, page 693.

13.2 Autoload

The autoload facility allows you to make a function or macro available but put off loading its
actual definition. An attempt to call a symbol whose definition is an autoload object automatically

206 GNU Emacs Lisp Reference Manual

reads the file to install the real definition and its other associated code, and then calls the real

definition.

To prepare a function or macro for autoloading, you must call autoload, specifying the function
name and the name of the file to be loaded. A file such as ‘emacs/lisp/loaddefs.el’ usually does
this when Emacs is first built.

The following example shows how doctor is prepared for autoloading in ‘loaddefs.el’:

(autoload ’doctor "doctor"
Il\

Switch to *doctor* buffer and start giving psychotherapy."
t)

The backslash and newline immediately following the double-quote are a convention used only in
the preloaded Lisp files such as ‘loaddefs.el’; they cause the documentation string to be put in
the ‘etc/DOC’ file. (See Section B.1 [Building Emacs|, page 693.) In any other source file, you
would write just this:

(autoload ’doctor "doctor"
"Switch to *doctor* buffer and start giving psychotherapy."
t)

Calling autoload creates an autoload object containing the name of the file and some other
information, and makes this the function definition of the specified symbol. When you later try to
call that symbol as a function or macro, the file is loaded; the loading should redefine that symbol
with its proper definition. After the file completes loading, the function or macro is called as if it
had been there originally.

If, at the end of loading the file, the desired Lisp function or macro has not been defined, then the
error error is signaled (with data "Autoloading failed to define function function-name").

The autoloaded file may, of course, contain other definitions and may require or provide one
or more features. If the file is not completely loaded (due to an error in the evaluation of the
contents) any function definitions or provide calls that occurred during the load are undone. This
is to ensure that the next attempt to call any function autoloading from this file will try again to
load the file. If not for this, then some of the functions in the file might appear defined, but they
may fail to work properly for the lack of certain subroutines defined later in the file and not loaded

successfully.

Chapter 13: Loading 207

Emacs as distributed comes with many autoloaded functions. The calls to autoload are in the

file ‘loaddefs.el’. There is a convenient way of updating them automatically.

Write ; ; ; ###autoload’ on a line by itself before a function definition before the real definition
of the function, in its autoloadable source file; then the command M-x update-file-autoloads
automatically puts the autoload call into ‘loaddefs.el’. M-x update-directory-autoloads is
more powerful; it updates autoloads for all files in the current directory.

You can also put other kinds of forms into ‘loaddefs.el’, by writing *; ; ; ###autoload’ followed
on the same line by the form. M-x update-file-autoloads copies the form from that line.

The commands for updating autoloads work by visiting and editing the file ‘loaddefs.el’. To
make the result take effect, you must save that file’s buffer.

autoload symbol filename &optional docstring interactive type Function
This function defines the function (or macro) named symbol so as to load automatically
from filename. The string filename is a file name which will be passed to load when
the function is called.

The argument docstring is the documentation string for the function. Normally, this is
the same string that is in the function definition itself. This makes it possible to look

at the documentation without loading the real definition.

If interactive is non-nil, then the function can be called interactively. This lets com-
pletion in M-x work without loading the function’s real definition. The complete inter-
active specification need not be given here. If type is macro, then the function is really
a macro. If type is keymap, then the function is really a keymap.

If symbol already has a non-nil function definition that is not an autoload object,
autoload does nothing and returns nil. If the function cell of symbol is void, or is
already an autoload object, then it is set to an autoload object that looks like this:

(autoload filename docstring interactive type)

For example,

(symbol-function ’run-prolog)
= (autoload "prolog" 169681 t nil)

208 GNU Emacs Lisp Reference Manual

In this case, "prolog" is the name of the file to load, 169681 refers to the documentation
string in the ‘emacs/etc/DOC’ file (see Section 21.1 [Documentation Basics], page 375),
t means the function is interactive, and nil that it is not a macro.

13.3 Repeated Loading

You may load a file more than once in an Emacs session. For example, after you have rewritten
and reinstalled a function definition by editing it in a buffer, you may wish to return to the original
version; you can do this by reloading the file in which it is located.

When you load or reload files, bear in mind that the load and load-library functions auto-
matically load a byte-compiled file rather than a non-compiled file of similar name. If you rewrite
a file that you intend to save and reinstall, remember to byte-compile it if necessary; otherwise
you may find yourself inadvertently reloading the older, byte-compiled file instead of your newer,

non-compiled file!

When writing the forms in a library, keep in mind that the library might be loaded more than
once. For example, the choice of defvar vs. defconst for defining a variable depends on whether
it is desirable to reinitialize the variable if the library is reloaded: defconst does so, and defvar
does not. (See Section 10.5 [Defining Variables|, page 157.)

The simplest way to add an element to an alist is like this:

(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist))

But this would add multiple elements if the library is reloaded. To avoid the problem, write this:

(or (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist)))

Occasionally you will want to test explicitly whether a library has already been loaded; you can
do so as follows:

(if (not (boundp ’foo-was-loaded))
execute-first-time-only)

(setq foo-was-loaded t)

Chapter 13: Loading 209

13.4 Features

provide and require are an alternative to autoload for loading files automatically. They work
in terms of named features. Autoloading is triggered by calling a specific function, but a feature is

loaded the first time another program asks for it by name.

The use of named features simplifies the task of determining whether required definitions have
been defined. A feature name is a symbol that stands for a collection of functions, variables, etc.
A program that needs the collection may ensure that they are defined by requiring the feature. If
the file that contains the feature has not yet been loaded, then it will be loaded (or an error will
be signaled if it cannot be loaded). The file thus loaded must provide the required feature or an
error will be signaled.

To require the presence of a feature, call require with the feature name as argument. require
looks in the global variable features to see whether the desired feature has been provided already.
If not, it loads the feature from the appropriate file. This file should call provide at the top-level
to add the feature to features.

Features are normally named after the files they are provided in so that require need not be
given the file name.

For example, in ‘emacs/lisp/prolog.el’, the definition for run-prolog includes the following
code:

(defun run-prolog ()
"Run an inferior Prolog process,\
input and output via buffer *prologx."
(interactive)
(require ’comint)
(switch-to-buffer (make-comint "prolog" prolog-program-name))
(inferior-prolog-mode))

The expression (require ’shell) loads the file ‘shell.el’ if it has not yet been loaded. This
ensures that make-shell is defined.

The ‘shell.el’ file contains the following top-level expression:

(provide ’shell)

210 GNU Emacs Lisp Reference Manual

This adds shell to the global features list when the ‘shell’ file is loaded, so that (require
’shell) will henceforth know that nothing needs to be done.

When require is used at top-level in a file, it takes effect if you byte-compile that file (see
Chapter 14 [Byte Compilation], page 213). This is in case the required package contains macros
that the byte compiler must know about.

Although top-level calls to require are evaluated during byte compilation, provide calls are
not. Therefore, you can ensure that a file of definitions is loaded before it is byte-compiled by
including a provide followed by a require for the same feature, as in the following example.

(provide ’my-feature) ; Ignored by byte compiler,
; evaluated by load.
(require ’my-feature) ; Evaluated by byte compiler.

provide feature Function
This function announces that feature is now loaded, or being loaded, into the current
Emacs session. This means that the facilities associated with feature are or will be
available for other Lisp programs.

The direct effect of calling provide is to add feature to the front of the list features if
it is not already in the list. The argument feature must be a symbol. provide returns
feature.

features
= (bar bish)

(provide ’foo)
= foo
features
= (foo bar bish)

During autoloading, if the file is not completely loaded (due to an error in the evaluation
of the contents) any function definitions or provide calls that occurred during the load
are undone. See Section 13.2 [Autoload], page 205.

require feature &optional filename Function
This function checks whether feature is present in the current Emacs session (using
(featurep feature); see below). If it is not, then require loads filename with load. If

Chapter 13: Loading 211

filename is not supplied, then the name of the symbol feature is used as the file name
to load.

If feature is not provided after the file has been loaded, Emacs will signal the error

error (with data ‘Required feature feature was not provided’).

featurep feature Function
This function returns t if feature has been provided in the current Emacs session (i.e.,
feature is a member of features.)

features Variable
The value of this variable is a list of symbols that are the features loaded in the current
FEmacs session. Each symbol was put in this list with a call to provide. The order of
the elements in the features list is not significant.

13.5 Unloading

You can discard the functions and variables loaded by a library to reclaim memory for other
Lisp objects. To do this, use the function unload-feature:

unload-feature feature Command
This command unloads the library that provided feature feature. It undefines all func-
tions and variables defined with defvar, defmacro, defconst, defsubst and defalias
by the library which provided feature feature. It then restores any autoloads associated
with those symbols.

The unload-feature function is written in Lisp; its actions are based on the variable load-

history.

load-history feature association list Variable
This variable’s value is an alist connecting library names with the names of functions
and variables they define, the features they provide, and the features they require.

Fach element is a list and describes one library. The CAR of the list is the name of the
library, as a string. The rest of the list is composed of these kinds of objects:

212 GNU Emacs Lisp Reference Manual

e Symbols, which were defined as functions or variables.
o Lists of the form (require . feature) indicating the features that are required.

e Lists of the form (provide . feature) indicating the features that are provided.

The value of load-history may have one element whose CAR is nil. This element

describes definitions made with eval-buffer on a buffer that is not visiting a file.

The command eval-region updates load-history, but does so by adding the symbols defined
to the element for the file being visited, rather than replacing that element.

13.6 Hooks for Loading

You can ask for code to be executed if and when a particular library is loaded, by calling

eval-after-load.

eval-after-load library form Function
This function arranges to evaluate form at the end of loading the library library, if and

when library is loaded.

The library name library must exactly match the argument of load. To get the proper
results when an installed library is found by searching load-path, you should not

include any directory names in library.

An error in form does not undo the load, but does prevent execution of the rest of
form.

after-load-alist Variable
An alist of expressions to evaluate if and when particular libraries are loaded. Each

element looks like this:

(filename forms...)

The function load checks after-load-alist in order to implement eval-after-load.

Chapter 14: Byte Compilation 213

14 Byte Compilation

GNU Emacs Lisp has a compiler that translates functions written in Lisp into a special represen-
tation called byte-code that can be executed more efficiently. The compiler replaces Lisp function
definitions with byte-code. When a byte-code function is called, its definition is evaluated by the

byte-code interpreter.

Because the byte-compiled code is evaluated by the byte-code interpreter, instead of being
executed directly by the machine’s hardware (as true compiled code is), byte-code is completely
transportable from machine to machine without recompilation. It is not, however, as fast as true
compiled code.

In general, any version of Emacs can run byte-compiled code produced by recent earlier versions
of Emacs, but the reverse is not true. In particular, if you compile a program with Emacs 18, you
can run the compiled code in Emacs 19, but not vice versa.

See Section 15.3 [Compilation Errors], page 234, for how to investigate errors occurring in byte

compilation.

14.1 The Compilation Functions

You can byte-compile an individual function or macro definition with the byte-compile func-
tion. You can compile a whole file with byte-compile-file, or several files with byte-recompile-
directory or batch-byte-compile.

When you run the byte compiler, you may get warnings in a buffer called ‘*Compile-Log*’.
These report usage in your program that suggest a problem, but are not necessarily erroneous.

Be careful when byte-compiling code that uses macros. Macro calls are expanded when they
are compiled, so the macros must already be defined for proper compilation. For more details, see
Section 12.3 [Compiling Macros|, page 195.

While byte-compiling a file, any require calls at top-level are executed. One way to ensure
that necessary macro definitions are available during compilation is to require the file that defines
them. See Section 13.4 [Features|, page 209.

214 GNU Emacs Lisp Reference Manual

A byte-compiled function is not as efficient as a primitive function written in C, but runs much

faster than the version written in Lisp. For a rough comparison, consider the example below:

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))
(while (> (setq n (1- n))
0))
(1ist t1 (current-time-string))))
= silly-loop
(silly-loop 100000)
= ("Thu Jan 12 20:18:38 1989"
"Thu Jan 12 20:19:29 1989") ; 51 seconds
(byte-compile ’silly-loop)
= [Compiled code not shown]
(silly-loop 100000)
= ("Thu Jan 12 20:21:04 1989"
"Thu Jan 12 20:21:17 1989") ; 13 seconds

In this example, the interpreted code required 51 seconds to run, whereas the byte-compiled

code required 13 seconds. These results are representative, but actual results will vary greatly.

byte-compile symbol Function
This function byte-compiles the function definition of symbol, replacing the previous
definition with the compiled one. The function definition of symbol must be the actual
code for the function; i.e., the compiler does not follow indirection to another symbol.
byte-compile does not compile macros. byte-compile returns the new, compiled

definition of symbol.

(defun factorial (integer)
"Compute factorial of INTEGER."
(if (= 1 integer) 1
(* integer (factorial (1- integer)))))
= factorial

Chapter 14: Byte Compilation 215

(byte-compile ’factorial)
=
#[(integer)
"~H\301U\203"H"@\301\207\302"H\303"HS!\"\207"
[integer 1 * factorial]
4 "Compute factorial of INTEGER."]

The result is a compiled function object. The string it contains is the actual byte-code;
each character in it is an instruction. The vector contains all the constants, variable
names and function names used by the function, except for certain primitives that are

coded as special instructions.

compile-defun Command
This command reads the defun containing point, compiles it, and evaluates the result.
If you use this on a defun that is actually a function definition, the effect is to install

a compiled version of that function.

byte-compile-file filename Command
This function compiles a file of Lisp code named filename into a file of byte-code. The

output file’s name is made by appending ‘c’ to the end of filename.

Compilation works by reading the input file one form at a time. If it is a definition of a
function or macro, the compiled function or macro definition is written out. Other forms
are batched together, then each batch is compiled, and written so that its compiled
code will be executed when the file is read. All comments are discarded when the input

file is read.
This command returns t. When called interactively, it prompts for the file name.

% 1s -1 pushx
-rw-r——r—— 1 lewis 791 Oct 5 20:31 push.el
(byte-compile-file "~/emacs/push.el")

=t
% 1s -1 pushx
-rw-r——r—— 1 lewis 791 Oct 5 20:31 push.el
-rw-rw-rw- 1 lewis 638 Oct 8 20:25 push.elc

216 GNU Emacs Lisp Reference Manual

byte-recompile-directory directory flag Command
This function recompiles every ¢.el’ file in directory that needs recompilation. A file
needs recompilation if a ‘.elc’ file exists but is older than the ‘.el’ file.

If a ‘. el’ file exists, but there is no corresponding ‘.elc’ file, then flag is examined. If
it is nil, the file is ignored. If it is non-nil, the user is asked whether the file should

be compiled.

The returned value of this command is unpredictable.

batch-byte-compile Function
This function runs byte-compile-file on the files remaining on the command line.
This function must be used only in a batch execution of Emacs, as it kills Emacs on
completion. An error in one file does not prevent processing of subsequent files. (The

file which gets the error will not, of course, produce any compiled code.)

%» emacs -batch -f batch-byte-compile *.el

byte-code code-string data-vector max-stack Function
This function actually interprets byte-code. A byte-compiled function is actually de-
fined with a body that calls byte-code. Don’t call this function yourself. Only the
byte compiler knows how to generate valid calls to this function.

In newer Emacs versions (19 and up), byte-code is usually executed as part of a compiled
function object, and only rarely as part of a call to byte-code.
14.2 Evaluation During Compilation

These features permit you to write code to be evaluated during compilation of a program.

eval-and-compile body Special Form
This form marks body to be evaluated both when you compile the containing code and

when you run it (whether compiled or not).

You can get a similar result by putting body in a separate file and referring to that file
with require. Using require is preferable if there is a substantial amount of code to

be executed in this way.

Chapter 14: Byte Compilation 217

eval-when-compile body Special Form
This form marks body to be evaluated at compile time only. The result of evaluation
by the compiler becomes a constant which appears in the compiled program. When
the program is interpreted, not compiled at all, body is evaluated normally.

At top-level, this is analogous to the Common Lisp idiom (eval-when (compile) ...).
Elsewhere, the Common Lisp ‘#.’ reader macro (but not when interpreting) is closer

to what eval-when-compile does.

14.3 Byte-Code Objects

Byte-compiled functions have a special data type: they are byte-code function objects.

Internally, a byte-code function object is much like a vector; however, the evaluator handles this
data type specially when it appears as a function to be called. The printed representation for a
byte-code function object is like that for a vector, with an additional ‘#’ before the opening ‘[’.

In Emacs version 18, there was no byte-code function object data type; compiled functions used
the function byte-code to run the byte code.

A byte-code function object must have at least four elements; there is no maximum number,

but only the first six elements are actually used. They are:

arglist The list of argument symbols.

byte-code The string containing the byte-code instructions.
constants The vector of constants referenced by the byte code.
stacksize The maximum stack size this function needs.

docstring The documentation string (if any); otherwise, nil. For functions preloaded before
Emacs is dumped, this is usually an integer which is an index into the ‘DOC’ file; use
documentation to convert this into a string (see Section 21.2 [Accessing Documenta-
tion], page 376).

interactive
The interactive spec (if any). This can be a string or a Lisp expression. It is nil for a
function that isn’t interactive.

218 GNU Emacs Lisp Reference Manual

Here’s an example of a byte-code function object, in printed representation. It is the definition

of the command backward-sexp.

#[(&optional arg)
"“H\204"F~@\301"P\302"H[!\207"
larg 1 forward-sexp]

2
254435

||p||]

The primitive way to create a byte-code object is with make-byte-code:

make-byte-code &rest elements Function
This function constructs and returns a byte-code function object with elements as its
elements.

You should not try to come up with the elements for a byte-code function yourself, because
if they are inconsistent, Emacs may crash when you call the function. Always leave it to the
byte-compiler to create these objects; it, we hope, always makes the elements consistent.

You can access the elements of a byte-code object using aref; you can also use vconcat to
create a vector with the same elements.

14.4 Disassembled Byte-Code

People do not write byte-code; that job is left to the byte compiler. But we provide a disassembler
to satisfy a cat-like curiosity. The disassembler converts the byte-compiled code into humanly
readable form.

The byte-code interpreter is implemented as a simple stack machine. Values get stored by being
pushed onto the stack, and are popped off and manipulated, the results being pushed back onto
the stack. When a function returns, the top of the stack is popped and returned as the value of
the function.

In addition to the stack, values used during byte-code execution can be stored in ordinary Lisp
variables. Variable values can be pushed onto the stack, and variables can be set by popping the

stack.

Chapter 14: Byte Compilation 219

disassemble object &optional stream Command
This function prints the disassembled code for object. If stream is supplied, then output
goes there. Otherwise, the disassembled code is printed to the stream standard-
output. The argument object can be a function name or a lambda expression.

As a special exception, if this function is used interactively, it outputs to a buffer named

‘xDisassemblex’.

Here are two examples of using the disassemble function. We have added explanatory com-
ments to help you relate the byte-code to the Lisp source; these do not appear in the output
of disassemble. These examples show unoptimized byte-code. Nowadays byte-code is usually
optimized, but we did not want to rewrite these examples, since they still serve their purpose.

(defun factorial (integer)
"Compute factorial of an integer."
(if (= 1 integer) 1
(* integer (factorial (1- integer)))))
= factorial

(factorial 4)
= 24

(disassemble ’factorial)

- byte-code for factorial:
doc: Compute factorial of an integer.
args: (integer)

0 constant 1 ; Push 1 onto stack.

1 varref integer ; Get value of integer
; from the environment
; and push the value

; onto the stack.

2 eqlsign ; Pop top two values off stack,
; compare them,
; and push result onto stack.

3 goto-if-nil 10 ; Pop and test top of stack;
; ifnil, go to 10,
; else continue.

220

10

11
12

13

14

15

16

17

The silly-loop function is somewhat more complex:

constant 1

goto 17

constant *

varref integer

constant factorial

varref integer

subl

call 1
call 2
return

= nil

I

GNU Emacs Lisp Reference Manual

Push 1 onto top of stack.

Go to 17 (in this case, 1 will be
returned by the function).

Push symbol * onto stack.

Push value of integer onto stack.

Push factorial onto stack.

Push value of integer onto stack.

Pop integer, decrement value,

push new value onto stack.

Stack now contains:

factorial

decremented value of integer

value of integer

Call function factorial using
the first (i.e., the top) element

of the stack as the argument;

push returned value onto stack.

Stack now contains:

— result of result of recursive

call to factorial

— value of integer

-

Using the first two
(i.e., the top two)

elements of the stack

as arguments,

call the function *,

pushing the result onto the stack.

Return the top element

of the stack.

Chapter 14: Byte Compilation

(defun silly-loop (n)

"Return time before and after N iterations of a loop."

(let ((t1 (current-time-string)))
(while (> (setq n (1- n))

0))

(1ist t1 (current-time-string))))

= silly-loop

(disassemble ’silly-loop)

- byte-code for silly-loop:

doc: Return time before and after N iterations of a loop.

args: (n)

0 constant current-time-string ; Push
; current-time-string
; onto top of stack.

1 call 0 ; Call current-time-string

2 varbind tl1

3 varref n

4 subl

6 varset n

7 constant O

I

with no argument,
pushing result onto stack.
Pop stack and bind t1
to popped value.
Get value of n from
the environment and push

the value onto the stack.

Subtract 1 from top of stack.

Duplicate the top of the stack;
i.e. copy the top of
the stack and push the
copy onto the stack.

Pop the top of the stack,
and bind n to the value.

In effect, the sequence dup varset

copies the top of the stack

into the value of n

without popping it.
Push 0 onto stack.

221

222 GNU Emacs Lisp Reference Manual

8 gtr ; Pop top two values off stack,
; test if n is greater than 0
; and push result onto stack.
9 goto-if-nil-else-pop 17 ; Goto 17 ifn > 0
; else pop top of stack
; and continue
; (this exits the while loop).

12 constant nil ; Push nil onto stack
; (this is the body of the loop).
13 discard ; Discard result of the body

; of the loop (a while loop
; is always evaluated for
; its side effects).

14 goto 3 ; Jump back to beginning
; of while loop.

17 discard ; Discard result of while loop
; by popping top of stack.

18 varref ti1 ; Push value of t1 onto stack.

19 constant current-time-string ; Push
H current-time-string
; onto top of stack.

20 call 0 ; Call current-time-string again.

21 1list2 ; Pop top two elements off stack,
; create a list of them,
; and push list onto stack.

22 unbind 1 ; Unbind t1 in local environment.
23 return ; Return value of the top of stack.

= nil

Chapter 15: Debugging Lisp Programs 223

15 Debugging Lisp Programs

There are three ways to investigate a problem in an Emacs Lisp program, depending on what
you are doing with the program when the problem appears.

e If the problem occurs when you run the program, you can use the Lisp debugger to investigate
what is happening during execution.

e If the problem is syntactic, so that Lisp cannot even read the program, you can use the Emacs
facilities for editing Lisp to localize it.

e If the problem occurs when trying to compile the program with the byte compiler, you need
to know how to examine the compiler’s input buffer.

Another useful debugging tool is a dribble file. When a dribble file is open, Emacs copies all
keyboard input characters to that file. Afterward, you can examine the file to find out what input
was used. See Section 34.7 [Terminal Input], page 638.

For debugging problems in terminal descriptions, the open-termscript function can be useful.
See Section 34.8 [Terminal Output], page 642.

15.1 The Lisp Debugger

The Lisp debugger provides you with the ability to suspend evaluation of a form. While eval-
uation is suspended (a state that is commonly known as a break), you may examine the run time
stack, examine the values of local or global variables, or change those values. Since a break is a
recursive edit, all the usual editing facilities of Emacs are available; you can even run programs
that will enter the debugger recursively. See Section 18.10 [Recursive Editing], page 321.

15.1.1 Entering the Debugger on an Error

The most important time to enter the debugger is when a Lisp error happens. This allows you
to investigate the immediate causes of the error.

However, entry to the debugger is not a normal consequence of an error. Many commands
frequently get Lisp errors when invoked in inappropriate contexts (such as C-f at the end of the
buffer) and during ordinary editing it would be very unpleasant to enter the debugger each time this
happens. If you want errors to enter the debugger, set the variable debug-on-error to non-nil.

224 GNU Emacs Lisp Reference Manual

debug-on-error User Option
This variable determines whether the debugger is called when a error is signaled and
not handled. If debug-on-error is t, all errors call the debugger. If it is nil, none
call the debugger.

The value can also be a list of error conditions that should call the debugger. For
example, if you set it to the list (void-variable), then only errors about a variable
that has no value invoke the debugger.

15.1.2 Debugging Infinite Loops

When a program loops infinitely and fails to return, your first problem is to stop the loop. On
most operating systems, you can do this with C-g, which causes quit.

Ordinary quitting gives no information about why the program was looping. To get more infor-
mation, you can set the variable debug-on-quit to non-nil. Quitting with C-g is not considered
an error, and debug-on-error has no effect on the handling of C-g. Contrariwise, debug-on-quit
has no effect on errors.

Once you have the debugger running in the middle of the infinite loop, you can proceed from
the debugger using the stepping commands. If you step through the entire loop, you will probably
get enough information to solve the problem.

debug-on-quit User Option
This variable determines whether the debugger is called when quit is signaled and not
handled. If debug-on-quit is non-nil, then the debugger is called whenever you quit
(that is, type C-g). If debug-on-quit is nil, then the debugger is not called when you
quit. See Section 18.8 [Quitting], page 317.

15.1.3 Entering the Debugger on a Function Call

To investigate a problem that happens in the middle of a program, one useful technique is to
cause the debugger to be entered when a certain function is called. You can do this to the function
in which the problem occurs, and then step through the function, or you can do this to a function
called shortly before the problem, step quickly over the call to that function, and then step through
its caller.

Chapter 15: Debugging Lisp Programs 225

debug-on-entry function-name Command
This function requests function-name to invoke the debugger each time it is called. It
works by inserting the form (debug ’debug) into the function definition as the first
form.

Any function defined as Lisp code may be set to break on entry, regardless of whether
it is interpreted code or compiled code. Even functions that are commands may be
debugged—they will enter the debugger when called inside a function, or when called
interactively (after the reading of the arguments). Primitive functions (i.e., those writ-
ten in C) may not be debugged.

When debug-on-entry is called interactively, it prompts for function-name in the
minibuffer.

Caveat: if debug-on-entry is called more than once on the same function, the second
call does nothing. If you redefine a function after using debug-on-entry on it, the
code to enter the debugger is lost.

debug-on-entry returns function-name.

(defun fact (n)
(if (zerop n) 1
(x n (fact (1- n)))))
= fact
(debug-on-entry ’fact)
= fact
(fact 3)
= 6

—————— Buffer: *Backtrace* -—-———-

Entering:

* fact(3)
eval-region (4870 4878 t)
byte-code("...")
eval-last-sexp(nil)
(let ...)

eval-insert-last-sexp(nil)
* call-interactively(eval-insert-last-sexp)
—————— Buffer: *Backtracex ------

226 GNU Emacs Lisp Reference Manual

(symbol-function ’fact)
= (lambda (n)
(debug (quote debug))
(if (zerop n) 1 (x n (fact (1- n)))))

cancel-debug-on-entry function-name Command
This function undoes the effect of debug-on-entry on function-name. When called

interactively, it prompts for function-name in the minibuffer.

If cancel-debug-on-entry is called more than once on the same function, the second
call does nothing. cancel-debug-on-entry returns function-name.

15.1.4 Explicit Entry to the Debugger

You can cause the debugger to be called at a certain point in your program by writing the
expression (debug) at that point. To do this, visit the source file, insert the text ‘(debug)’ at the
proper place, and type C-M-x. Be sure to undo this insertion before you save the file!

The place where you insert ‘ (debug)’ must be a place where an additional form can be evaluated
and its value ignored. (If the value isn’t ignored, it will alter the execution of the program!) Usually

this means inside a progn or an implicit progn (see Section 9.1 [Sequencing], page 131).

15.1.5 Using the Debugger

When the debugger is entered, it displays the previously selected buffer in one window and a
buffer named ‘*Backtracex*’ in another window. The backtrace buffer contains one line for each
level of Lisp function execution currently going on. At the beginning of this buffer is a message
describing the reason that the debugger was invoked (such as the error message and associated

data, if it was invoked due to an error).

The backtrace buffer is read-only and uses a special major mode, Debugger mode, in which
letters are defined as debugger commands. The usual Emacs editing commands are available; thus,
you can switch windows to examine the buffer that was being edited at the time of the error, switch
buffers, visit files, or do any other sort of editing. However, the debugger is a recursive editing level
(see Section 18.10 [Recursive Editing], page 321) and it is wise to go back to the backtrace buffer
and exit the debugger (with the g command) when you are finished with it. Exiting the debugger
gets out of the recursive edit and kills the backtrace buffer.

Chapter 15: Debugging Lisp Programs 227

The contents of the backtrace buffer show you the functions that are executing and the arguments
that were given to them. It also allows you to specify a stack frame by moving point to the line
describing that frame. (A stack frame is the place where the Lisp interpreter records information
about a particular invocation of a function. The frame whose line point is on is considered the
current frame.) Some of the debugger commands operate on the current frame.

The debugger itself should always be run byte-compiled, since it makes assumptions about how
many stack frames are used for the debugger itself. These assumptions are false if the debugger is
running interpreted.

15.1.6 Debugger Commands

Inside the debugger (in Debugger mode), these special commands are available in addition to
the usual cursor motion commands. (Keep in mind that all the usual facilities of Emacs, such as
switching windows or buffers, are still available.)

The most important use of debugger commands is for stepping through code, so that you can see
how control flows. The debugger can step through the control structures of an interpreted function,
but cannot do so in a byte-compiled function. If you would like to step through a byte-compiled
function, replace it with an interpreted definition of the same function. (To do this, visit the source
file for the function and type C-M-x on its definition.)

c Exit the debugger and continue execution. When continuing is possible, it resumes
execution of the program as if the debugger had never been entered (aside from the effect
of any variables or data structures you may have changed while inside the debugger).

Continuing is possible after entry to the debugger due to function entry or exit, explicit
invocation, quitting or certain errors. Most errors cannot be continued; trying to
continue an unsuitable error causes the same error to occur again.

d Continue execution, but enter the debugger the next time any Lisp function is called.
This allows you to step through the subexpressions of an expression, seeing what values
the subexpressions compute, and what else they do.

The stack frame made for the function call which enters the debugger in this way will
be flagged automatically so that the debugger will be called again when the frame is
exited. You can use the u command to cancel this flag.

b Flag the current frame so that the debugger will be entered when the frame is exited.

Frames flagged in this way are marked with stars in the backtrace buffer.

228

GNU Emacs Lisp Reference Manual

Don’t enter the debugger when the current frame is exited. This cancels a b command
on that frame.

Read a Lisp expression in the minibuffer, evaluate it, and print the value in the echo
area. This is the same as the command M-ESC, except that e is not normally disabled
like M-ESC.

Terminate the program being debugged; return to top-level Emacs command execution.
If the debugger was entered due to a C-g but you really want to quit, and not debug,
use the g command.

Return a value from the debugger. The value is computed by reading an expression
with the minibuffer and evaluating it.

The r command makes a difference when the debugger was invoked due to exit from
a Lisp call frame (as requested with b); then the value specified in the r command is

used as the value of that frame.

You can’t use r when the debugger was entered due to an error.

15.1.7 Invoking the Debugger

Here we describe fully the function used to invoke the debugger.

debug &rest debugger-args

This function enters the debugger. It switches buffers to a buffer named ‘*Backtrace*’
(or ‘*Backtracex<2>’ if it is the second recursive entry to the debugger, etc.), and fills
it with information about the stack of Lisp function calls. It then enters a recursive
edit, leaving that buffer in Debugger mode and displayed in the selected window.

Debugger mode provides a ¢ command which operates by exiting the recursive edit,
switching back to the previous buffer, and returning to whatever called debug. The r
command also returns from debug. These are the only ways the function debug can
return to its caller.

If the first of the debugger-args passed to debug is nil (or if it is not one of the following
special values), then the rest of the arguments to debug are printed at the top of the
‘*Backtracex’ buffer. This mechanism is used to display a message to the user.

However, if the first argument passed to debug is one of the following special values,
then it has special significance. Normally, these values are passed to debug only by the
internals of Emacs and the debugger, and not by programmers calling debug.

Function

Chapter 15: Debugging Lisp Programs

The special values are:

lambda

debug

exit

error

When the first argument is lambda, the debugger displays ‘Entering:’ as
a line of text at the top of the buffer. This means that a function is being

entered when debug-on-next-call is non-nil.

When the first argument is debug, the debugger displays ‘Entering:’ just
as in the lambda case. However, debug as the argument indicates that the
reason for entering the debugger is that a function set to debug on entry

is being entered.

In addition, debug as the first argument directs the debugger to mark the
function that called debug so that it will invoke the debugger when exited.
(When lambda is the first argument, the debugger does not do this, because
it has already been done by the interpreter.)

When the first argument is t, the debugger displays the following as the
top line in the buffer:

Beginning evaluation of function call form:

This indicates that it was entered due to the evaluation of a list form at a

time when debug-on-next-call is non-nil.

When the first argument is exit, it indicates the exit of a stack frame
previously marked to invoke the debugger on exit. The second argument
given to debug in this case is the value being returned from the frame. The
debugger displays ‘Return value:’ on the top line of the buffer, followed
by the value being returned.

When the first argument is error, the debugger indicates that it is being
entered because an error or quit was signaled and not handled, by dis-
playing ‘Signaling:’ followed by the error signaled and any arguments to
signal. For example,

(let ((debug-on-error t))

/1 0)
—————— Buffer: *Backtrace* ------
Signaling: (arith-error)

/(1 0)

—————— Buffer: *Backtrace* ------
If an error was signaled, presumably the variable debug-on-error is non-
nil. If quit was signaled, then presumably the variable debug-on-quit

is non-nil.

229

230 GNU Emacs Lisp Reference Manual

nil Use nil as the first of the debugger-args when you want to enter the de-
bugger explicitly. The rest of the debugger-args are printed on the top line
of the buffer. You can use this feature to display messages—for example,
to remind yourself of the conditions under which debug is called.

15.1.8 Internals of the Debugger

This section describes functions and variables used internally by the debugger.

debugger Variable
The value of this variable is the function to call to invoke the debugger. Its value must
be a function of any number of arguments (or, more typically, the name of a function).
Presumably this function will enter some kind of debugger. The default value of the
variable is debug.

The first argument that Lisp hands to the function indicates why it was called. The
convention for arguments is detailed in the description of debug.

backtrace Command
This function prints a trace of Lisp function calls currently active. This is the function
used by debug to fill up the ‘*Backtrace*’ buffer. It is written in C, since it must have
access to the stack to determine which function calls are active. The return value is
always nil.

In the following example, backtrace is called explicitly in a Lisp expression. When the
expression is evaluated, the backtrace is printed to the stream standard-output: in
this case, to the buffer ‘backtrace-output’. Each line of the backtrace represents one
function call. If the arguments of the function call are all known, they are displayed;
if they are being computed, that fact is stated. The arguments of special forms are

elided.

Chapter 15: Debugging Lisp Programs 231

(with-output-to-temp-buffer "backtrace-output"
(let ((var 1))
(save—-excursion
(setq var (eval ’(progn
(1+ var)
(list ’testing (backtrace))))))))

= nil
——————————— Buffer: backtrace-output ---—-—————---—-
backtrace()
(list ...computing arguments...)
(progn ...)
eval ((progn (1+ var) (list (quote testing) (backtrace))))
(setq ...)
(save-excursion ...)
(et ...)

(with-output-to-temp-buffer ...)
eval-region(1973 2142 #<buffer *scratch*>)
byte-code("... for eval-print-last-sexp ...")
eval-print-last-sexp(nil)
* call-interactively(eval-print-last-sexp)
——————————— Buffer: backtrace-output ---—-—————---—-

The character ‘*’ indicates a frame whose debug-on-exit flag is set.

debug-on-next-call Variable
This variable determines whether the debugger is called before the next eval, apply
or funcall. It is automatically reset to nil when the debugger is entered.

The d command in the debugger works by setting this variable.

backtrace-debug Ievel flag Function
This function sets the debug-on-exit flag of the eval frame Ievel levels down to flag. If
flag is non-nil, this will cause the debugger to be entered when that frame exits. Even
a nonlocal exit through that frame will enter the debugger.

The debug-on-exit flag is an entry in the stack frame of a function call. This flag is

examined on every exit from a function.

232 GNU Emacs Lisp Reference Manual

Normally, this function is only called by the debugger.

command-debug-status Variable
This variable records the debugging status of current interactive command. Each time
a command is called interactively, this variable is bound to nil. The debugger can
set this variable to leave information for future debugger invocations during the same
command.

The advantage of using this variable rather that defining another global variable is that

the data will never carry over to a later other command invocation.

backtrace-frame frame-number Function
The function backtrace-frame is intended for use in Lisp debuggers. It returns infor-
mation about what computation is happening in the eval frame level levels down.

If that frame has not evaluated the arguments yet (or is a special form), the value is
(nil function arg-forms...).

If that frame has evaluated its arguments and called its function already, the value is
(t function arg-values...).

In the return value, function is whatever was supplied as CAR of evaluated list, or a
lambda expression in the case of a macro call. If the function has a &rest argument,
that is represented as the tail of the list arg-values.

If the argument is out of range, backtrace-frame returns nil.

15.2 Debugging Invalid Lisp Syntax

The Lisp reader reports invalid syntax, but cannot say where the real problem is. For example,
the error “End of file during parsing” in evaluating an expression indicates an excess of open
parentheses (or square brackets). The reader detects this imbalance at the end of the file, but it
cannot figure out where the close parenthesis should have been. Likewise, “Invalid read syntax:
")"” indicates an excess close parenthesis or missing open parenthesis, but not where the missing

parenthesis belongs. How, then, to find what to change?

Chapter 15: Debugging Lisp Programs 233

If the problem is not simply an imbalance of parentheses, a useful technique is to try C-M-e at
the beginning of each defun, and see if it goes to the place where that defun appears to end. If it
does not, there is a problem in that defun.

However, unmatched parentheses are the most common syntax errors in Lisp, and we can give
further advice for those cases.

15.2.1 Excess Open Parentheses

The first step is to find the defun that is unbalanced. If there is an excess open parenthesis, the
way to do this is to insert a close parenthesis at the end of the file and type C-M-b (backward-sexp).
This will move you to the beginning of the defun that is unbalanced. (Then type C-SPC C-_ C-u
C-SPC to set the mark there, undo the insertion of the close parenthesis, and finally return to the
mark.)

The next step is to determine precisely what is wrong. There is no way to be sure of this except
to study the program, but often the existing indentation is a clue to where the parentheses should
have been. The easiest way to use this clue is to reindent with C-M-q and see what moves.

Before you do this, make sure the defun has enough close parentheses. Otherwise, C-M-q will
get an error, or will reindent all the rest of the file until the end. So move to the end of the defun
and insert a close parenthesis there. Don’t use C-M-e to move there, since that too will fail to work

until the defun is balanced.

Then go to the beginning of the defun and type C-M-q. Usually all the lines from a certain point
to the end of the function will shift to the right. There is probably a missing close parenthesis, or a
superfluous open parenthesis, near that point. (However, don’t assume this is true; study the code
to make sure.) Once you have found the discrepancy, undo the C-M-q, since the old indentation is
probably appropriate to the intended parentheses.

After you think you have fixed the problem, use C-M-q again. It should not change anything, if
the problem is really fixed.

234 GNU Emacs Lisp Reference Manual

15.2.2 Excess Close Parentheses

To deal with an excess close parenthesis, first insert an open parenthesis at the beginning of the
file and type C-M-f to find the end of the unbalanced defun. (Then type C-SPC C-_ C-u C-SPC to
set the mark there, undo the insertion of the open parenthesis, and finally return to the mark.)

Then find the actual matching close parenthesis by typing C-M-f at the beginning of the defun.
This will leave you somewhere short of the place where the defun ought to end. It is possible that
you will find a spurious close parenthesis in that vicinity.

If you don’t see a problem at that point, the next thing to do is to type C-M-q at the beginning
of the defun. A range of lines will probably shift left; if so, the missing open parenthesis or spurious
close parenthesis is probably near the first of those lines. (However, don’t assume this is true;
study the code to make sure.) Once you have found the discrepancy, undo the C-M-q, since the old
indentation is probably appropriate to the intended parentheses.

15.3 Debugging Problems in Compilation

When an error happens during byte compilation, it is normally due to invalid syntax in the
program you are compiling. The compiler prints a suitable error message in the ‘*Compile-Log*’
buffer, and then stops. The message may state a function name in which the error was found, or
it may not. Regardless, here is how to find out where in the file the error occurred.

What you should do is switch to the buffer ¢ *Compiler Input*’. (Note that the buffer name
starts with a space, so it does not show up in M-x list-buffers.) This buffer contains the program
being compiled, and point shows how far the byte compiler was able to read.

If the error was due to invalid Lisp syntax, point shows exactly where the invalid syntax was
detected. The cause of the error is not necessarily near by! Use the techniques in the previous
section to find the error.

If the error was detected while compiling a form that had been read successfully, then point is
located at the end of the form. In this case, it can’t localize the error precisely, but can still show

you which function to check.

Chapter 15: Debugging Lisp Programs 235

15.4 Edebug

Edebug is a source-level debugger for Emacs Lisp programs that provides the following features:

e Step through evaluation, stopping before and after each expression.

e Set conditional or unconditional breakpoints.

e Trace slow or fast stopping briefly at each stop point, or each breakpoint.
e Evaluate expressions as if outside of Edebug.

e Automatically reevaluate a list of expressions and display their results each time Edebug up-
dates the display.

e QOutput trace info on function enter and exit.

The first three sections of this chapter should tell you enough about Edebug to enable you to
use it.

15.4.1 Using Edebug

To debug a Lisp program with Edebug, you must first prepare the Lisp functions that you want
to debug. See Section 15.4.2 [Edebug Prepare], page 236.

Once a function is prepared, any call to the function activates Edebug. This involves entering
a recursive edit which is a level of Edebug activation.

Activating Edebug may stop execution and let you step through the function, or it may continue
execution while checking for debugging commands, depending on the selected Edebug execution
mode. See Section 15.4.3 [Edebug Modes|, page 237.

Within Edebug, you normally view an Emacs buffer showing the source of the Lisp function you
are debugging. We call this the Edebug buffer—but note that it is not always the same buffer, and
it is not reserved for Edebug use.

An arrow at the left margin indicates the line where the function is executing. Point initially
shows where within the line the function is executing, but this ceases to be true if you move point
yourself.

If you prepare the definition of fac (shown below) for Edebug and then execute (fac 3), here
is what you normally see. Point is at the open-parenthesis before if.

236 GNU Emacs Lisp Reference Manual

(defun fac (n)
=>%(if (< 0 n)
(x n (fac (1- n)))
1))

The places within a function where Edebug can stop execution are called stop points. These
occur both before and after each subexpression that is a list, and also after each variable reference.
Stop points before variables are optional, under the control of the value of edebug-stop-before-
symbols. Here we show with periods the stop points normally found in the function fac:

(defun fac (n)
.(if .(< 0 n.).
.(x n. .(fac (1- n.).).).
1))

While a buffer is the Edebug buffer, the special commands of Edebug are available in it, instead
of many usual editing commands. Type ? to display a list of Edebug commands. In particular,
you can exit the innermost Edebug activation level with C-], and you can return all the way to top
level with q.

For example, you can type the Edebug command SPC to execute until the next stop point. If
you type SPC once after entry to fac, here is the state that you get:

(defun fac (n)
=>(if x(< 0 n)
(x n (fac (1- n)))
1))

When Edebug stops execution after an expression, it displays the expression’s value in the echo
area. Use the r command to display the value again later.

While Edebug is active, it catches all errors (if debug-on-error is non-nil) and quits (if debug-
on-quit is non-nil) instead of the standard debugger. When this happens, Edebug displays the
last stop point that it knows about. This may be the location of a call to a function which was not
prepared for Edebug debugging, within which the error actually occurred.

15.4.2 Preparing Functions for Edebug

In order to use Edebug to debug a function, you must first prepare the function. Preparing a
function inserts additional code into it which invokes Edebug at the proper places.

Chapter 15: Debugging Lisp Programs 237

Any call to an Edebug-prepared function activates Edebug. This may or may not stop execution,
depending on the Edebug execution mode in use. Some Edebug modes only update the display
to indicate the progress of the evaluation without stopping execution. The default initial Edebug
mode is step which does stop execution. See Section 15.4.3 [Edebug Modes|, page 237.

Once you have loaded Edebug, the command C-M-x is redefined so that when used on a function
or macro definition, it prepares the function or macro if given a prefix argument. If the variable
edebug-all-defuns is non-nil, that inverts the meaning of the prefix argument: then C-M-x
prepares the function or macro unless it has a prefix argument. The default value of edebug-all-
defuns is nil. The command M-x edebug-all-defuns toggles the value of the variable edebug-

all-defuns.

If edebug-all-defunsis non-nil, then the commands eval-region and eval-current-buffer

also prepare any functions and macros whose definitions they evaluate.
Loading a file does not prepare functions and macros for Edebug.

See Chapter 8 [Evaluation], page 119 for discussion of other evaluation functions available inside

of Edebug.

15.4.3 Edebug Modes

Edebug supports several execution modes for running the program you are debugging. We call
these alternatives Edebug modes; do not confuse them with major modes or minor modes. The
current Edebug mode determines how Edebug displays the progress of the evaluation, whether it

stops at each stop point, or continues to the next breakpoint, for example.

Normally, you specify the Edebug mode for execution by typing a command to continue the
program in a certain mode. Here is a table of these commands. All except for S resume execution

of the program, at least for a certain distance.

S Stop: don’t execute any more of the program for now, just wait for more Edebug
commands.

SPC Step: stop at the next stop point encountered.

t Trace: pause one second at each Edebug stop point.

T Rapid trace: mention each stop point, but don’t actually pause.

238 GNU Emacs Lisp Reference Manual

g Go: run until the next breakpoint. See Section 15.4.6 [Breakpoints], page 240.
c Continue: pause for one second at each breakpoint, but don’t stop.

C Continue: mention each breakpoint, but don’t actually pause.

G Non-stop: ignore breakpoints. You can still stop the program by typing S.

In general, the execution modes earlier in the above list run the program more slowly or stop

sooner.

When you enter a new Edebug level, the mode comes from the value of the variable edebug-
initial-mode. By default, this specifies step mode. If the mode thus specified is not stop mode,
then the Edebug level executes the program (or part of it).

While executing or tracing, you can interrupt the execution by typing any Edebug command.
Edebug stops the program at the next stop point and then executes the command that you typed.

For example, typing t during execution switches to trace mode at the next stop point.
You can use the S command to stop execution without doing anything else.

If your function happens to read input, a character you hit intending to interrupt execution
may be read by the function instead. You can avoid such unintended results by paying attention

to when your program wants input.

Keyboard macros containing the commands in this section do not completely work: exiting from
Edebug, to resume the program, loses track of the keyboard macro. This is not easy to fix.

15.4.4 Stepping

f Run the program forward over one expression. More precisely, set a temporary break-
point at the position that C-M-f would reach, then execute in go mode so that the
program will stop at breakpoints. See Section 15.4.6 [Breakpoints], page 240 for the
details on breakpoints.

With a prefix argument n, the temporary breakpoint is placed n sexps beyond point.
If the containing list ends before n more elements, then the place to stop is after the

containing expression.

Be careful that the position C-M-f finds is a place that the program will really get to;
this may not be true in a condition-case, for example.

Chapter 15: Debugging Lisp Programs 239

This command does forward-sexp starting at point rather than the stop point, thus
providing more flexibility. If you want to execute one expression from the current stop
point, type w first, to move point there.

o) Run the program until the end of the containing sexp. If the containing sexp is the top
level defun, run until just before the function returns. If that is where you are now,
return from the function and then stop.

This command does not exit the currently executing function unless you are positioned
after the last sexp of the function.

If the program does a non-local exit, it may fail to reach the temporary breakpoint
that this command sets.

i Step into the function about to be called. Use this command before any of the argu-
ments of the function call are evaluated, since otherwise it is too late.

One undesirable side effect of using edebug-step-in is that the next time the stepped-
into function is called, Edebug will be called there as well.

h Proceed to the stop point near where point is. This uses a temporary breakpoint.

The £ command runs the program forward over one expression. More precisely, set a temporary
breakpoint at the position that C-M-f would reach, then execute in go mode so that the program
will stop at breakpoints. See Section 15.4.6 [Breakpoints|, page 240 for the details on breakpoints.

With a prefix argument n, the temporary breakpoint is placed n sexps beyond point. If the

containing list ends before n more elements, then the place to stop is after the containing expression.

Be careful that the position C-M-f finds is a place that the program will really get to; this may
not be true in a condition-case, for example.

The £ command uses the existing value of point as the basis for setting the breakpoint, because
that is more flexible. To execute one expression from the current stop point, type w and then f.

The o command continues “out of” an expression. It places a temporary breakpoints at the end
of the containing sexp. If the containing sexp is the top level defun, it continues until just before

the function returns. If that is where you are now, it returns from the function and then stops.

This command does not exit the currently executing function unless you are positioned after
the last sexp of the function.

The i command steps into the function about to be called. Use this command before any of the
arguments of the function call are evaluated, since otherwise it is too late.

240 GNU Emacs Lisp Reference Manual

One undesirable side effect of using i is that the next time the stepped-into function is called,
Edebug will be called there as well.

The h command proceeds to the stop point near where point is, using a temporary breakpoint.

All the commands in this section may fail to work as expected in case of nonlocal exit, because

a nonlocal exit can bypass the temporary breakpoint where you expected the program to stop.

15.4.5 Miscellaneous

Some miscellaneous commands are described here.

c-] Abort one level of Edebug activity.

q Return to the top level editor command loop. This exits all recursive editing levels,
including all levels of Edebug activity.

r Redisplay the result of the previous expression in the echo area.

d Display a backtrace, excluding Edebug’s own functions for clarity.

You cannot use debugger commands in the backtrace buffer in Edebug as you would
in the standard debugger.

The backtrace buffer is killed automatically when you continue execution.

15.4.6 Breakpoints

While using Edebug, you can specify breakpoints in the program you are testing: points where
execution should stop. You can set a breakpoint at any stop point, as defined in Section 15.4.1
[Using Edebug], page 235—even before a symbol. For setting and unsetting breakpoints, the stop
point that is affected is the first one at or after point in the Edebug buffer. Here are the Edebug

commands for breakpoints:

b Set a breakpoint at the stop point at or after point. If you use a prefix argument, the
breakpoint is temporary (it turns off the first time it stops the program).

u Unset the breakpoint (if any) at the stop point at or after the current point.

Chapter 15: Debugging Lisp Programs 241

x cond RET
Set a conditional breakpoint which stops the program only if cond evaluates to a non-
nil value. If you use a prefix argument, the breakpoint is temporary (it turns off the
first time it stops the program).

B Move point to the next breakpoint in the current function definition.

While in Edebug, you can set a breakpoint with b (edebug-set-breakpoint) and unset one
with u (edebug-unset-breakpoint). First you must move point to a position at or before the
desired Edebug stop point, then hit the key to change the breakpoint. Unsetting a breakpoint that
has not been set does nothing.

Reevaluating the function with edebug-defun clears all breakpoints in the function.

A conditional breakpoint tests a condition each time the program gets there, to decide whether to

stop. To set a conditional breakpoint, use x, and specify the condition expression in the minibuffer.

You can make both conditional and unconditional breakpoints temporary by using a prefix arg to
the command to set the breakpoint. After breaking at a temporary breakpoint, it is automatically
cleared.

Edebug always stops or pauses at a breakpoint except when the Edebug mode is Go-nonstop.
In that mode, it ignores breakpoints entirely.

To find out where your breakpoints are, use the B (edebug-next-breakpoint) command, which
moves point to the next breakpoint in the function following point, or to the first breakpoint if there

are no following breakpoints. This command does not continue execution—it just moves point in
the buffer.

15.4.7 Views

These Edebug commands let you view aspects of the buffer and window status that obtained
before entry to Edebug.

v View the outside window configuration.
P Temporarily display the outside current buffer with point at its outside position.
W Switch back to the buffer showing the currently executing function, and move point

back to the current stop point.

242 GNU Emacs Lisp Reference Manual

W Forget the saved outside window configuration—so that the current window configura-
tion will remain unchanged when you next exit Edebug (by continuing the program).
Also toggle the edebug-save-windows variable.

15.4.8 Evaluation

While within Edebug, you can evaluate expressions “as if” Edebug were not running. Edebug
tries to be invisible to the expression’s evaluation.

e exp RET Evaluate expression exp in the context outside of Edebug. That is, Edebug tries to
avoid altering the effect of exp.

M-ESC exp RET

Evaluate expression exp in the context of Edebug itself.

C-x C-e Evaluate the expression in the buffer before point, in the context outside of Edebug.

15.4.9 Evaluation List Buffer

You can use the evaluation list buffer, called ‘*edebug*’, to evaluate expressions interactively.
You can also set up the evaluation list of expressions to be evaluated automatically each time
Edebug is reentered.

E Switch to the evaluation list buffer ‘*edebug*’.

In the ‘*edebug*’ buffer you can use the commands of Lisp Interaction as well as these special
commands:

LFD Evaluate the expression before point, in the context outside of Edebug, and insert the
value in the buffer.

C-x C-e Evaluate the expression before point, in the context outside of Edebug.

C-c C-u Build a new evaluation list from the first expression of each group, reevaluate and
redisplay. Groups are separated by a line starting with a comment.

C-c C-d Delete the evaluation list group that point is in.

C-c C-w Switch back to the Edebug buffer at the current stop point.

Chapter 15: Debugging Lisp Programs 243

You can evaluate expressions in the evaluation list window with LFD or C-x C-e, just as you

would in ‘*scratchx’; but they are evaluated in the context outside of Edebug.

The expressions you enter interactively (and their results) are lost when you continue execution
of your function unless you add them to the evaluation list with C-c C-u (edebug-update-eval-
list). This command builds a new list from the first expression of each evaluation list group.
Groups are separated by a line starting with a comment.

When the evaluation list is redisplayed, each expression is displayed followed by the result of
evaluating it, and a comment line. If an error occurs during an evaluation, the error message is
displayed in a string as if it were the result. Therefore expressions that use variables not currently
valid do not interrupt your debugging.

Here is an example of what the evaluation list window looks like after several expressions have
been added to it:

(current-buffer)
#<buffer *scratchx*>

edebug-outside-point-max
"Symbol’s value as variable is void: edebug-outside-point-max"

this-command
eval-last-sexp

To delete a group, move point into it and type C-c C-d (edebug-delete-eval-item), or simply
delete the text for it and update the evaluation list with C-c C-u. When you add a new group, be
sure to add a comment at the beginning.

After selecting ‘*edebug*’, you can return to the source code buffer (the Edebug buffer) with
C-c C-w. The *edebug* buffer is killed when you continue execution of your function, and recreated

next time it is needed.

244 GNU Emacs Lisp Reference Manual

15.4.10 Printing

If the results of your expressions contain circular references to other parts of the same structure,

you can print them more usefully with the ‘custom-print’.

To load the package and activate custom printing only for Edebug, simply use the command
edebug-install-custom-print-funcs. Then set the variable print-circle to enable special
handling of circular structure. To restore the standard print functions, use edebug-reset-print-

funcs.

15.4.11 The Outside Context

Edebug tries to be transparent to the program you are debugging, but it does not succeed
completely. In addition, most evaluations you do within Edebug (see Chapter 8 [Evaluation],
page 119) occur in the same outside context which is temporarily restored for the evaluation. This
section explains precisely how use Edebug fails to be completely transparent.

15.4.11.1 Just Checking

Whenever Edebug is entered just to think about whether to take some action, it needs to save

and restore certain data.

e max-lisp-eval-depth and max-specpdl-size are both incremented for each edebug-enter
call so that your code should not be impacted by Edebug frames on the stack.

e The state of keyboard macro execution is saved and cleared out.

15.4.11.2 Outside Window Configuration

When Edebug needs to display something (e.g., in trace mode), it saves the current window
configuration from “outside” Edebug (see Section 25.16 [Window Configurations], page 471). When

you exit Edebug (by continuing the program), it restores the previous window configuration.

Emacs redisplays only when it pauses. Usually, when you continue Edebug, the program comes
back into Edebug at a breakpoint or after stepping, without pausing or reading input in between.

Chapter 15: Debugging Lisp Programs 245

In such cases, Emacs never gets a chance to redisplay the “outside” configuration. What you see
is the window configuration for within Edebug, with no interruption.

The window configuration proper does not include which buffer is current or where point and

mark are in the current buffer, but Edebug saves and restores these also.

Entry to Edebug for displaying something also saves and restores the following data. (Some of
these variables are deliberately not restored if an error or quit signal occurs.)

e The position of point in the Edebug buffer is saved and restored if the outside current buffer
is the same as the Edebug buffer.

e The outside window configuration, as described above, is saved and restored if edebug-save-
windows is non-nil.

e The current buffer, and point and mark in the current buffer are normally saved and restored
even if the current buffer is the same as the Edebug buffer.

e The value of point in each displayed buffers is saved and restored if edebug-save-displayed-
buffer-points is non-nil.

e The variables overlay-arrow-position and overlay-arrow-string are saved and restored.
This permits recursive use of Edebug, and use of Edebug while using GUD.

e cursor-in-echo-area is locally bound to nil so that the cursor shows up in the window.

15.4.11.3 Recursive Edit

When Edebug is entered and actually reads commands from the user, it saves (and later restores)
these additional data:

e The current match data, for whichever buffer was current.

e last-command, this-command, last-command-char, and last-input-char. Commands used
within Edebug do not affect these variables outside of Edebug.

But note that it is not possible to preserve the status reported by (this-command-keys) and
the variable unread-command-char.

e standard-output and standard-input.

246 GNU Emacs Lisp Reference Manual

15.4.11.4 Side Effects

Edebug operation unavoidably alters some data in Emacs, and this can interfere with debugging

certain programs.

Lisp stack usage is increased, but the limits, max-lisp-eval-depth and max-specpdl-size,

are also increased proportionally.

The key sequence returned by this-command-keys is changed by executing commands within

Edebug and there appears to be no way to reset the key sequence from Lisp.

Edebug cannot save and restore the value of unread-command-char or unread-command-
events. Entering Edebug while these variables have nontrivial values can interfere with exe-
cution of the program you are debugging.

Complex commands executed while in Edebug are added to the variable command-history.

In rare cases this can alter execution.

Within Edebug, the recursion depth appears one deeper than the recursion depth outside
Edebug.

Horizontal scrolling of the Edebug buffer is not recovered.

15.4.12 Macro Calls

When Edebug prepares for stepping through an expression that uses a Lisp macro, it needs

additional advice to do the job properly. This is because there is no way to tell which parts of

the macro call are forms to be evaluated. You must explain the format of calls to each macro to

enable Edebug to handle it. To do this, use def-edebug-form-spec to define the format of calls

to a given macro.

def-edebug-form-spec macro argpattern Macro

Specify which parts of a call to macro macro are subexpressions to be evaluated. The
second argument, argpattern, details what the argument list looks like.

Here is a table of the possibilities for argpattern and its subexpressions:

A list of any number of evaluated arguments.

A list of unevaluated arguments.

sexp A single unevaluated object.

Chapter 15: Debugging Lisp Programs 247

form
symbolp
integerp
stringp
vectorp
atom

function

function

>object
(patterns)

[patterns]

&optional

&rest

&or

A single evaluated expression.

An unevaluated symbol.

An unevaluated number.

An unevaluated string.

An unevaluated vector.

An unevaluated object that is not a cons cell.

A function argument: a quoted symbol, a quoted lambda expression, or a form (that
should evaluate to a function or lambda expression). Edebug treats the body of a
lambda expression treated as evaluated.

A function serves as a predicate—it designates the set of possible arguments for which
it would return non-nil.

The precise object object, treated as unevaluated.

A list whose elements are described by patterns. A sublist of the same format as the
top level, processed recursively.

A sequence of arguments that are described by patterns.

This symbol serves as a flag saying that all following elements in the specification list
at this level are optional. They may or may not match arguments; as soon as one does
not match, processing of the specification list at this level terminates. To make just
one item optional, use [&optional pattern].

This symbol serves as a flag saying that the following elements in the specification list
at this level may be repeated, in order, zero or more times. Only one &rest may appear

at the same level of a specification list, and &rest must not be followed by &optional.

To specify repetition of certain types of arguments, followed by dissimilar arguments,
use [&rest patterns...].

This symbol serves as an operator saying that the following elements in the specification
list at this level are alternatives. To group two or more list elements as one alternative,
bracket them in [...]. Only one &or may appear in a list, and it may not be followed
by &optional or &rest. One of the alternatives must match, unless the &or is preceded
by &optional or &rest.

If the actual arguments of a macro call fail to match the specification, taking account of alter-

natives, optional arguments and repeated arguments, Edebug reports a syntax error in use of the

macro.

248 GNU Emacs Lisp Reference Manual

The combination of backtracking, &optional, &rest, &or, and [...] for grouping provides the
equivalent of regular expressions. The (...) lists require balanced parentheses, which is the only
context free (finite state with stack) construct supported.

Here are some examples of using def-edebug-form-spec. First, for the let special form:

(def-edebug-form-spec let
> ((&rest
&or symbolp (symbolp &optional form))
&rest form))

Here’s the spec for the for loop macro (see Section 12.6 [Problems with Macros|, page 198) and
for the case and do macros in ‘cl.el’:

(def-edebug-form-spec for
> (symbolp ’from form ’to form ’do &rest form))

(def-edebug-form-spec case
>(form &rest (sexp form)))

(def-edebug-form-spec do
> ((&rest &or symbolp (symbolp &optional form form))
(form &rest form)
&rest body))

Finally, the functions mapcar, mapconcat, mapatoms, apply, and funcall all take function
arguments, and Edebug defines specifications for them. Here’s one example:

(def-edebug-form-spec apply ’(function &rest form))

The backquote (¢) macro results in an expression that is not necessarily evaluated. Edebug
cannot step through code generated by use of backquote.

15.4.13 Edebug Options

These options affect the behavior of Edebug:

Chapter 15: Debugging Lisp Programs 249

edebug-all-defuns User Option
If non-nil, normal evaluation of defun and defmacro forms prepares the functions
and macros for stepping with Edebug. This applies to eval-defun, eval-region and
eval-current-buffer.

The default value is nil.

edebug-stop-before-symbols User Option
If non-nil, Edebug places stop points before symbols as well as after.

This option takes effect for a function when you prepare it for stepping with Edebug.
Changing the option’s value during execution of Edebug has no effect on the functions
already set up for Edebug execution.

edebug-save-windows User Option
If non-nil, save and restore window configuration on Edebug calls. It takes some time
to save and restore, so if your program does not care what happens to the window
configurations, it is better to set this variable to nil.

The default value is t.

edebug-save-point User Option
If non-nil, Edebug saves and restores point and the mark in source code buffers. The
default value is t.

edebug-save-displayed-buffer-points User Option

If non-nil, save and restore point in all buffers when entering Edebug mode.

Saving and restoring point in other buffers is necessary if you are debugging code that
changes the point of a buffer which is displayed in a non-selected window. If Edebug
or the user then selects the window, the buffer’s point will be changed to the window’s

point.

Saving and restoring is an expensive operation since it visits each window and each
displayed buffer twice for each Edebug call, so it is best to avoid it if you can.

The default value is nil.

250 GNU Emacs Lisp Reference Manual

edebug-initial-mode User Option
If this variable is non-nil, it specifies an Edebug mode to start in each time the program
enters a new Edebug recursive-edit level. Possible values are step, go, Go-nonstop,
trace, Trace-fast, continue, and Continue-fast.

The default value is step.

edebug-trace User Option
Non-nil means display a trace of function entry and exit. Tracing output is displayed
in a buffer named ‘*edebug-trace*’, one function entry or exit per line, indented by
the recursion level. You can customize this display by replacing the functions edebug-

print-trace-entry and edebug-print-trace-exit.

The default value is nil.

Chapter 16: Reading and Printing Lisp Objects 251

16 Reading and Printing Lisp Objects

Printing and reading are the operations of converting Lisp objects to textual form and vice
versa. They use the printed representations and read syntax described in Chapter 2 [Types of Lisp
Object], page 17.

This chapter describes the Lisp functions for reading and printing. It also describes streams,

which specify where to get the text (if reading) or where to put it (if printing).

16.1 Introduction to Reading and Printing

Reading a Lisp object means parsing a Lisp expression in textual form and producing a cor-
responding Lisp object. This is how Lisp programs get into Lisp from files of Lisp code. We call
the text the read syntax of the object. For example, reading the text ‘(a . 5)’ returns a cons cell

whose CAR is a and whose CDR is the number 5.

Printing a Lisp object means producing text that represents that object—converting the object
to its printed representation. Printing the cons cell described above produces the text ‘(a . 5)’.

Reading and printing are more or less inverse operations: printing the object that results from
reading a given piece of text often produces the same text, and reading the text that results from
printing an object usually produces a similar-looking object. For example, printing the symbol
foo produces the text ‘foo’, and reading that text returns the symbol foo. Printing a list whose
elements are a and b produces the text ‘(a b)’, and reading that text produces a list (but not the

same list) with elements are a and b.
However, these two operations are not precisely inverses. There are two kinds of exceptions:

e Printing can produce text that cannot be read. For example, buffers, windows, subprocesses
and markers print into text that starts with ‘#’; if you try to read this text, you get an error.

There is no way to read those data types.

e One object can have multiple textual representations. For example, ‘1’ and ‘01’ represent the
same integer, and ‘(a b)’ and ‘(a . (b))’ represent the same list. Reading will accept any of
the alternatives, but printing must choose one of them.

252

GNU Emacs Lisp Reference Manual

16.2 Input Streams

Most of the Lisp functions for reading text take an input stream as an argument. The input

stream specifies where or how to get the characters of the text to be read. Here are the possible

types of input stream:

buffer

marker

string

function

nil

symbol

The input characters are read from buffer, starting with the character directly after

point. Point advances as characters are read.

The input characters are read from the buffer that marker is in, starting with the
character directly after the marker. The marker position advances as characters are
read. The value of point in the buffer has no effect when the stream is a marker.

The input characters are taken from string, starting at the first character in the string

and using as many characters as required.

The input characters are generated by function, one character per call. Normally
function is called with no arguments, and should return a character.

Occasionally function is called with one argument (always a character). When that
happens, function should save the argument and arrange to return it on the next call.
This is called unreading the character; it happens when the Lisp reader reads one
character too many and want to “put it back where it came from”.

t used as a stream means that the input is read from the minibuffer. In fact, the
minibuffer is invoked once and the text given by the user is made into a string that is
then used as the input stream.

nil used as a stream means that the value of standard-input should be used instead;
that value is the default input stream, and must be a non-nil input stream.

A symbol as output stream is equivalent to the symbol’s function definition (if any).

Here is an example of reading from a stream which is a buffer, showing where point is located

before and after:

—————— Buffer: foo ————————-

Thisx is the contents of foo.

—————— Buffer: foo --—-—-—-—-----

(read (get-buffer "foo"))

= is

(read (get-buffer "foo"))

= the

Chapter 16: Reading and Printing Lisp Objects 253

—————————— Buffer: foo ————————-
This is thex contents of foo.

—————————— Buffer: foo ————————-

Note that the first read skips a space at the beginning of the buffer. Reading skips any amount of
whitespace preceding the significant text.

In Emacs 18, reading a symbol discarded the delimiter terminating the symbol. Thus, point
would end up at the beginning of ‘contents’ rather than after ‘the’. The Emacs 19 behavior is
superior because it correctly handles input such as ‘bar (foo)’ where the delimiter that ends one
object is needed as the beginning of another object.

Here is an example of reading from a stream that is a marker, initialized to point at the beginning
of the buffer shown. The value read is the symbol This.

—————————— Buffer: foo --—-—-—-—-—----
This is the contents of foo.
—————————— Buffer: foo ————————-

(setq m (set-marker (make-marker) 1 (get-buffer "foo")))
= #<marker at 1 in foo>

(read m)
= This
m
= #<marker at 6 in foo> ;3 After the first space.

Here we read from the contents of a string:

(read "(When in) the course")
= (When in)

The following example reads from the minibuffer. The prompt is: ‘Lisp expression: . (That
is always the prompt used when you read from the stream t.) The user’s input is shown following
the prompt.

254 GNU Emacs Lisp Reference Manual

(read t)
= 23
—————————— Buffer: Minibuffer ————————-
Lisp expression: 23 RET
—————————— Buffer: Minibuffer ----------

Finally, here is an example of a stream that is a function, named useless-stream. Before we
use the stream, we initialize the variable useless-1ist to a list of characters. Then each call to the

function useless-stream obtains the next characters in the list or unreads a character by adding
it to the front of the list.

(setq useless-list (append "XY()" nil))
= (88 89 40 41)
(defun useless-stream (&optional unread)
(if unread
(setq useless-list (cons unread useless-list))
(progl (car useless-list)
(setq useless-list (cdr useless-1list)))))
= useless-stream

Now we read using the stream thus constructed:

(read ’useless-stream)
= XY

useless-1list
= (41)

Note that the close parenthesis remains in the list. The reader has read it, discovered that it ended
the input, and unread it. Another attempt to read from the stream at this point would get an error
due to the unmatched close parenthesis.

get-file-char Function

This function is used internally as an input stream to read from the input file opened
by the function load. Don’t use this function yourself.

16.3 Input Functions

This section describes the Lisp functions and variables that pertain to reading.

Chapter 16: Reading and Printing Lisp Objects 255

In the functions below, stream stands for an input stream (see the previous section). If stream

is nil or omitted, it defaults to the value of standard-input.

An end-of-file error results if an unterminated list or vector is found.

read &optional stream Function
This function reads one textual Lisp expression from stream, returning it as a Lisp
object. This is the basic Lisp input function.

read-from-string string &optional start end Function
This function reads the first textual Lisp expression from the text in string. It returns a
cons cell whose CAR is that expression, and whose CDR is an integer giving the position
of the next remaining character in the string (i.e., the first one not read).

If start is supplied, then reading begins at index start in the string (where the first
character is at index 0). If end is also supplied, then reading stops at that index as if
the rest of the string were not there.

For example:

(read-from-string "(setq x 55) (setq y 5)")
= ((setq x 55) . 11)
(read-from-string "\"A short string\"")
= ("A short string" . 16)

; ;5 Read starting at the first character.
(read-from-string "(list 112)" 0)
= ((list 112) . 10)
;5 Read starting at the second character.
(read-from-string "(list 112)" 1)
= (1list . 6)
;5 Read starting at the seventh character,
;3 and stopping at the ninth.
(read-from-string "(list 112)" 6 8)
= (11 . 8)

standard-input Variable
This variable holds the default input stream: the stream that read uses when the

stream argument is nil.

256

GNU Emacs Lisp Reference Manual

16.4 Output Streams

An output stream specifies what to do with the characters produced by printing. Most print

functions accept an output stream as an optional argument. Here are the possible types of output

stream:

buffer

marker

function

nil

symbol

The output characters are inserted into buffer at point. Point advances as characters
are inserted.

The output characters are inserted into the buffer that marker is in at the marker
position. The position advances as characters are inserted. The value of point in the
buffer has no effect when the stream is a marker.

The output characters are passed to function, which is responsible for storing them
away. It is called with a single character as argument, as many times as there are
characters to be output, and is free to do anything at all with the characters it receives.

The output characters are displayed in the echo area.

nil specified as an output stream means that the value of standard-output should
be used as the output stream; that value is the default output stream, and must be a

non-nil output stream.

A symbol as output stream is equivalent to the symbol’s function definition (if any).

Here is an example of a buffer used as an output stream. Point is initially located as shown

immediately before the ‘h’ in ‘the’. At the end, point is located directly before that same ‘h’.

—————— Buffer: foo --—-—-—-—-----

This is txhe contents of foo.

—————— Buffer: foo -———————-

(print "This is the output" (get-buffer "foo"))

= "This is the output"

—————— Buffer: foo ————————-

This is t
"This is the output"

xhe contents of foo.

—————— Buffer: foo ————————-

Now we show a use of a marker as an output stream. Initially, the marker points in buffer foo,
between the ‘t’ and the ‘h’ in the word ‘the’. At the end, the marker has been advanced over the

Chapter 16: Reading and Printing Lisp Objects 257

inserted text so that it still points before the same ‘h’. Note that the location of point, shown in

the usual fashion, has no effect.

—————————— Buffer: foo ——————-——-
"This is the xoutput"
—————————— Buffer: foo --—-———----

= #<marker at 11 in foo>

(print "More output for foo." m)
= "More output for foo."

—————————— Buffer: foo --—-——=—----
"This is t

"More output for foo."

he xoutput"

—————————— Buffer: foo --——-—----
m

= #<marker at 35 in foo>
The following example shows output to the echo area:

(print "Echo Area output" t)

= "Echo Area output"
—————————— Echo Area ———---—-———-
"Echo Area output"
—————————— Echo Area ----------

Finally, we show an output stream which is a function. The function eat-output takes each
character that it is given and conses it onto the front of the list last-output (see Section 5.5
[Building Lists], page 82). At the end, the list contains all the characters output, but in reverse

order.

(setq last-output nil)
= nil
(defun eat-output (c)
(setq last-output (cons c last-output)))
= eat-output
(print "This is the output" ’eat-output)
= "This is the output"

258 GNU Emacs Lisp Reference Manual

last-output
= (10 34 116 117 112 116 117 111 32 101 104
116 32 115 105 32 115 105 104 84 34 10)

Now we can put the output in the proper order by reversing the list:

(concat (nreverse last-output))
j n
\"This is the output\"

16.5 Output Functions

This section describes the Lisp functions for printing Lisp objects.

Some of the Emacs printing functions add quoting characters to the output when necessary
so that it can be read properly. The quoting characters used are ‘\’ and ‘"’; they are used to
distinguish strings from symbols, and to prevent punctuation characters in strings and symbols
from being taken as delimiters. See Section 2.1 [Printed Representation], page 17, for full details.
You specify quoting or no quoting by the choice of printing function.

If the text is to be read back into Lisp, then it is best to print with quoting characters to avoid
ambiguity. Likewise, if the purpose is to describe a Lisp object clearly for a Lisp programmer.
However, if the purpose of the output is to look nice for humans, then it is better to print without
quoting.

Printing a self-referent Lisp object requires an infinite amount of text. In certain cases, trying
to produce this text leads to a stack overflow. Emacs detects such recursion and prints ‘#level’
instead of recursively printing an object already being printed. For example, here ‘#0’ indicates a
recursive reference to the object at level 0 of the current print operation:

(setq foo (list nil))
= (nil)
(setcar foo foo)
= (#0)

Chapter 16: Reading and Printing Lisp Objects 259

In the functions below, stream stands for an output stream. (See the previous section for a
description of output streams.) If stream is nil or omitted, it defaults to the value of standard-

output.

print object &optional stream Function
The print is a convenient way of printing. It outputs the printed representation of
object to stream, printing in addition one newline before object and another after it.

Quoting characters are used. print returns object. For example:

(progn (print ’The\ cat\ in)
(print "the hat")
(print " came back"))

_|

- The\ cat\ in
_|

- "the hat"

_|

- " came back"
_|

= " came back"

prinl object &optional stream Function
This function outputs the printed representation of object to stream. It does not print
any spaces or newlines to separate output as print does, but it does use quoting
characters just like print. It returns object.

(progn (prinl ’The\ cat\ in)
(prinl "the hat")
(prinl " came back"))
- The\ cat\ in"the hat"" came back"
= " came back"

princ object &optional stream Function

This function outputs the printed representation of object to stream. It returns object.

This function is intended to produce output that is readable by people, not by read, so
quoting characters are not used and double-quotes are not printed around the contents
of strings. It does not add any spacing between calls.

260 GNU Emacs Lisp Reference Manual

(progn
(princ ’The\ cat)
(princ " in the \"hat\""))
-1 The cat in the "hat"
= " in the \"hat\""

terpri &optional stream Function
This function outputs a newline to stream. The name stands for “terminate print”.

write-char character &optional stream Function

This function outputs character to stream. It returns character.

prinl-to-string object &optional noescape Function
This function returns a string containing the text that prinl would have printed for
the same argument.

(prinl-to-string ’foo)
= "foo"
(prinl-to-string (mark-marker))
= "#<marker at 2773 in strings.texi>"

If noescape is non-nil, that inhibits use of quoting characters in the output. (This
argument is supported in Emacs versions 19 and later.)

(prinl-to-string "foo")

= ll\llfoo\ll n
(prinl-to-string "foo" t)
= "foo"

See format, in Section 4.5 [String Conversion|, page 67, for other ways to obtain the
printed representation of a Lisp object as a string.

16.6 Variables Affecting Output

standard-output Variable
The value of this variable is the default output stream, used when the stream argument
is omitted or nil.

Chapter 16: Reading and Printing Lisp Objects 261

print-escape-newlines Variable

If this variable is non-nil, then newline characters in strings are printed as ‘\n’. Nor-

mally they are printed as actual newlines.

This variable affects the print functions prinl and print, as well as everything that
uses them. It does not affect princ. Here is an example using prini:

(prinl "a\nb")
- "a
- b"
= "a
= b
(let ((print-escape-newlines t))
(prinil "a\nb"))

-4 "a\nb"
= "a
= b

In the second expression, the local binding of print-escape-newlines is in effect

during the call to prinl, but not during the printing of the result.

print-length Variable
The value of this variable is the maximum number of elements of a list that will be

printed. If the list being printed has more than this many elements, then it is abbre-

viated with an ellipsis.

If the value is nil (the default), then there is no limit.

(setq print-length 2)

= 2
(print ’(1 2 3 4 5))

4 @12...)

= (12 ...)

print-level Variable

The value of this variable is the maximum depth of nesting of parentheses that will
be printed. Any list or vector at a depth exceeding this limit is abbreviated with an

ellipsis. A value of nil (which is the default) means no limit.

262 GNU Emacs Lisp Reference Manual

This variable exists in version 19 and later versions.

Chapter 17: Minibuffers 263

17 Minibuffers

A minibuffer is a special buffer that Emacs commands use to read arguments more complicated
than the single numeric prefix argument. These arguments include file names, buffer names, and
command names (as in M-x). The minibuffer is displayed on the bottom line of the screen, in the

same place as the echo area, but only while it is in use for reading an argument.

17.1 Introduction to Minibuffers

In most ways, a minibuffer is a normal Emacs buffer. Most operations within a buffer, such as
editing commands, work normally in a minibuffer. However, many operations for managing buffers
do not apply to minibuffers. The name of a minibuffer always has the form ‘ *Minibuf-number’,
and it cannot be changed. Minibuffers are displayed only in special windows used only for minibuf-
fers; these windows always appear at the bottom of a frame. (Sometime frames have no minibuffer
window, and sometimes a special kind of frame contains nothing but a minibuffer window; see
Section 26.6 [Minibuffers and Frames], page 479.)

The minibuffers window is normally a single line; you can resize it temporarily with the window
sizing commands, but reverts to its normal size when the minibuffer is exited.

A recursive minibuffer may be created when there is an active minibuffer and a command is
invoked that requires input from a minibuffer. The first minibuffer is named * *Minibuf-0%*’. Re-
cursive minibuffers are named by incrementing the number at the end of the name. (The names
begin with a space so that they won’t show up in normal buffer lists.) Of several recursive mini-
buffers, the innermost (or most recently entered) is the active minibuffer. We usually call this
“the” minibuffer. You can permit or forbid recursive minibuffers by setting the variable enable-
recursive-minibuffers or by putting properties of that name on command symbols (see Sec-
tion 17.8 [Minibuffer Misc|, page 286).

Like other buffers, a minibuffer may use any of several local keymaps (see Chapter 19 [Keymaps],
page 327); these contain various exit commands and in some cases completion commands. See
Section 17.5 [Completion|, page 269.

e minibuffer-local-map is for ordinary input (no completion).

e minibuffer-local-ns-map is similar, except that SPC exits just like RET. This is used mainly
for Mocklisp compatibility.

e minibuffer-local-completion-map is for permissive completion.

264 GNU Emacs Lisp Reference Manual

e minibuffer-local-must-match-map is for strict completion and for cautious completion.

17.2 Reading Text Strings with the Minibuffer

The minibuffer is usually used to read text which is returned as a string, but can also be used
to read a Lisp object in textual form. The most basic primitive for minibuffer input is read-from-

minibuffer.

read-from-minibuffer prompt-string &optional initial keymap read hist Function
This function is the most general way to get input through the minibuffer. By default,
it accepts arbitrary text and returns it as a string; however, if read is non-nil, then
it uses read to convert the text into a Lisp object (see Section 16.3 [Input Functions],
page 254).

The first thing this function does is to activate a minibuffer and display it with prompt-

string as the prompt. This value must be a string.

Then, if initial is a string; its contents are inserted into the minibuffer as initial contents.
The text thus inserted is treated as if the user had inserted it; the user can alter it with

Emacs editing commands.

The value of initial may also be a cons cell of the form (string . position). This
means to insert string in the minibuffer but put the cursor position characters from
the beginning, rather than at the end.

If keymap is non-nil, that keymap is the local keymap to use while reading. If keymap
is omitted or nil, the value of minibuffer-local-map is used as the keymap. Spec-
ifying a keymap is the most important way to customize minibuffer input for various

applications including completion.

The argument hist specifies which history list variable to use for saving the input and
for history commands used in the minibuffer. It defaults to minibuffer-history. See
Section 17.4 [Minibuffer History], page 268.

When the user types a command to exit the minibuffer, the current minibuffer contents

are usually made into a string which becomes the value of read-from-minibuffer.

Chapter 17: Minibuffers 265

However, if read is non-nil, read-from-minibuffer converts the result to a Lisp
object, and returns that object, unevaluated.

Suppose, for example, you are writing a search command and want to record the last
search string and provide it as a default for the next search. Suppose that the previous
search string is stored in the variable last-search-string. Here is how you can read
a search string while providing the previous string as initial input to be edited:

(read-from-minibuffer "Find string: " last-search-string)

Assuming the value of last-search-string is ‘No’, and the user wants to search for
‘Nope’, the interaction looks like this:

(setq last-search-string "No")

(read-from-minibuffer "Find string: " last-search-string)
—————————— Buffer: Minibuffer ----—----—-
Find string: Nox
—————————— Buffer: Minibuffer ----------
;5 The user now types pe RET:
= "Nope"

This technique is no longer preferred for most applications; it is usually better to use
a history list.

read-string prompt &optional initial Function
This function reads a string from the minibuffer and returns it. The arguments prompt
and initial are used as in read-from-minibuffer.

This is a simplified interface to the read-from-minibuffer function:

(read-string prompt initial)

(read-from-minibuffer prompt initial nil nil)

minibuffer-local-map Variable
This is the default local keymap for reading from the minibuffer. It is the keymap used
by the minibuffer for local bindings in the function read-string. By default, it makes
the following bindings:

266 GNU Emacs Lisp Reference Manual

LFD exit-minibuffer
RET exit-minibuffer
C-g abort-recursive-edit
M-n and M-p
next-history-element and previous-history-element
M-r next-matching-history-element
M-s previous-matching-history-element
read-no-blanks-input prompt &optional initial Function

This function reads a string from the minibuffer, but does not allow whitespace charac-
ters as part of the input: instead, those characters terminate the input. The arguments

prompt and initial are used as in read-from-minibuffer.

This is a simplified interface to the read-from-minibuffer function, and passes the
value of the minibuffer-local-ns-map keymap as the keymap argument for that
function. Since the keymap minibuffer-local-ns-map does not rebind C-q, it is
possible to put a space into the string, by quoting it.

(read-no-blanks-input prompt initial)

(read-from-minibuffer prompt initial minibuffer-local-ns-map)

minibuffer-local-ns-map Variable
This built-in variable is the keymap used as the minibuffer local keymap in the function
read-no-blanks-input. By default, it makes the following bindings:

LFD exit-minibuffer

SPC exit-minibuffer

TAB exit-minibuffer

RET exit-minibuffer

C-g abort-recursive-edit
? self-insert-and-exit
M-n and M-p

next-history-element and previous-history-element
M-r next-matching-history-element

M-s previous-matching-history-element

Chapter 17: Minibuffers 267

17.3 Reading Lisp Objects with the Minibuffer

This section describes functions for reading Lisp objects with the minibuffer.

read-minibuffer prompt &optional initial Function
This function reads a Lisp object in the minibuffer and returns it, without evaluating it.
The arguments prompt and initial are used as in read-from-minibuffer;in particular,

initial must be a string or nil.
This is a simplified interface to the read-from-minibuffer function:

(read-minibuffer prompt initial)

(read-from-minibuffer prompt initial nil t)
Here is an example in which we supply the string " (testing)" as initial input:

(read-minibuffer
"Enter an expression: " (format "%s" ’(testing)))

; ;5 Here is how the minibuffer is displayed:

—————————— Buffer: Minibuffer ----------
Enter an expression: (testing)x
—————————— Buffer: Minibuffer ---———----

The user can type RET immediately to use the initial input as a default, or can edit the

input.

eval-minibuffer prompt &optional initial Function

This function reads a Lisp expression in the minibuffer, evaluates it, then returns the

result. The arguments prompt and initial are used as in read-from-minibuffer.
This function simply evaluates the result of a call to read-minibuffer:

(eval-minibuffer prompt initial)

(eval (read-minibuffer prompt initial))

268 GNU Emacs Lisp Reference Manual

edit-and-eval-command prompt form Function
This function reads a Lisp expression in the minibuffer, and then evaluates it. The
difference between this command and eval-minibuffer is that here the initial form is
not optional and it is treated as a Lisp object to be converted to printed representation
rather than as a string of text. It is printed with prini, so if it is a string, double-
quote characters (‘"’) appear in the initial text. See Section 16.5 [Output Functions],
page 258.

The first thing edit-and-eval-command does is to activate the minibuffer with prompt
as the prompt. Then it inserts the printed representation of form in the minibuffer,
and lets the user edit. When the user exits the minibuffer, the edited text is read with
read and then evaluated. The resulting value becomes the value of edit-and-eval-
command.

In the following example, we offer the user an expression with initial text which is a
valid form already:

(edit-and-eval-command "Please edit: " ’(forward-word 1))

;3 After evaluating the preceding expression,
HF the following appears in the minibuffer:
—————————— Buffer: Minibuffer --—————-—-

Please edit: (forward-word 1)«
—————————— Buffer: Minibuffer --——————--

Typing RET right away would exit the minibuffer and evaluate the expression, thus

moving point forward one word. edit-and-eval-command returns nil in this example.

17.4 Minibuffer History

A minibuffer history list records previous minibuffer inputs so the user can reuse them conve-
niently. There are many separate history lists which contain different kinds of inputs. The Lisp
programmer’s job is to specify the right history list for each use of the minibuffer.

The basic minibuffer input functions read-from-minibuffer and completing-read both accept
an optional argument named hist which is how you specify the history list. Here are the possible

values:

Chapter 17: Minibuffers 269

variable If you specify a variable (a symbol), that variable is the history list.

(variable . startpos)
If you specify a cons cell of this form, then variable is the history list variable, and
startpos specifies the initial history position (an integer, counting from zero which
specifies the most recent element of the history).

If you specify startpos, then you should also specify that element of the history as

initial, for consistency.

If you don’t specify hist, then the default history list minibuffer-history is used. For other
standard history lists, see below. You can also create your own history list variable; just initialize
it to nil before the first use. The value of the history list variable is a list of strings, most recent
first.

Both read-from-minibuffer and completing-read add new elements to the history list auto-
matically, and provide commands to allow the user to reuse items on the list. The only thing your
program needs to do to use a history list is to initialize it and to pass its name to the input functions
when you wish. But it is safe to modify the list by hand when the minibuffer input functions are
not using it.

minibuffer-history Variable
The default history list for minibuffer history input.

query-replace-history Variable
A history list for arguments to query-replace (and similar arguments to other com-
mands).

file-name-history Variable

A history list for file name arguments.

17.5 Completion

Completion is a feature that fills in the rest of a name starting from an abbreviation for it.
Completion works by comparing the user’s input against a list of valid names and determining how
much of the name is determined uniquely by what the user has typed.

For example, when you type C-x b (switch-to-buffer) and then type the first few letters of
the name of the buffer to which you wish to switch, and then type TAB (minibuffer-complete),

270 GNU Emacs Lisp Reference Manual

Emacs extends the name as far as it can. Standard Emacs commands offer completion for names
of symbols, files, buffers, and processes; with the functions in this section, you can implement
completion for other kinds of names.

The try-completion function is the basic primitive for completion: it returns the longest
determined completion of a given initial string, with a given set of strings to match against.

The function completing-read provides a higher-level interface for completion. A call to
completing-read specifies how to determine the list of valid names. The function then activates
the minibuffer with a local keymap that binds a few keys to commands useful for completion. Other

functions provide convenient simple interfaces for reading certain kinds of names with completion.

17.5.1 Basic Completion Functions

try-completion string collection &optional predicate Function
This function returns the longest common substring of all possible completions of string
in collection. The value of collection must be an alist, an obarray, or a function which
implements a virtual set of strings.

If collection is an alist (see Section 5.8 [Association Lists]|, page 96), completion com-
pares the CAR of each cons cell in it against string; if the beginning of the CAR equals
string, the cons cell matches. If no cons cells match, try-completion returns nil. If
only one cons cell matches, and the match is exact, then try-completion returns t.
Otherwise, the value is the longest initial sequence common to all the matching strings
in the alist.

If collection is an obarray (see Section 7.3 [Creating Symbols], page 112), the names
of all symbols in the obarray form the space of possible completions. They are tested
and used just like the CARs of the elements of an association list. (The global variable
obarray holds an obarray containing the names of all interned Lisp symbols.)

Note that the only valid way to make a new obarray is to create it empty and then
add symbols to it one by one using intern. Also, you cannot intern a given symbol in
more than one obarray.

If the argument predicate is non-nil, then it must be a function of one argument. It is
used to test each possible match, and the match is accepted only if predicate returns

Chapter 17: Minibuffers 271

non-nil. The argument given to predicate is either a cons cell from the alist (the CAR

of which is a string) or else it is a symbol (not a symbol name) from the obarray.

It is also possible to use a function symbol as collection. Then the function is solely
responsible for performing completion; try-completion returns whatever this func-
tion returns. The function is called with three arguments: string, predicate and nil.
(The reason for the third argument is so that the same function can be used in all-
completions and do the appropriate thing in either case.) See Section 17.5.2 [Pro-
grammed Completion|, page 273.

In the first of the following examples, the string ‘foo’ is matched by three of the alist
CARs. All of the matches begin with the characters ‘fooba’; so that is the result. In
the second example, there is only one possible match, and it is exact, so the value is t.

(try-completion

"foo"

>(("foobari1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4)))
= "fooba"

(try-completion "foo" ’(("barfoo" 2) ("foo" 3)))
=t

In the following example, numerous symbols begin with the characters ‘forw’, and all
of them begin with the word ‘forward’. In most of the symbols, this is followed with
a ‘=’, but not in all, so no more than ‘forward’ can be completed.

(try-completion "forw" obarray)
= "forward"

Finally, in the following example, only two of the three possible matches pass the
predicate test (the string ‘foobaz’ is too short). Both of those begin with the string
‘foobar’.

(defun test (s)
(> (length (car s)) 6))
= test

272 GNU Emacs Lisp Reference Manual

(try-completion

n f 00 n
>(("foobarl" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
’test)
= "foobar"
all-completions string collection &optional predicate Function

This function returns a list of all possible completions, instead of the longest substring

they share. The parameters to this function are the same as to try-completion.

If collection is a function, it is called with three arguments: string, predicate and

t, and all-completions returns whatever the function returns. See Section 17.5.2

[Programmed Completion|, page 273.
Here is an example, using the function test shown in the example for try-completion:

(defun test (s)
(> (length (car s)) 6))
= test
(all-completions

llfooll
>(("foobarl" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))

(function test))
= ("foobarl" "foobar2")

completion-ignore-case Variable
If the value of this variable is non-nil, Emacs does not consider case significant in

completion.

The two functions try-completion and all-completions have nothing in themselves to do
with minibuffers. However, completion is most often used there, which is why it is described in this

chapter.

Chapter 17: Minibuffers 273

17.5.2 Programmed Completion

Sometimes it is not possible to create an alist or an obarray containing all the intended possible
completions. In such a case, you can supply your own function to compute the completion of a
given string. This is called programmed completion.

To use this feature, pass a symbol with a function definition as the collection argument to
completing-read. This command arranges to pass the function along to try-completion and
all-completions, which will then let your function do all the work.

The completion function should accept three arguments:

e The string to be completed.

e The predicate function to filter possible matches, or nil if none. Your function should call the
predicate for each possible match and ignore the possible match if the predicate returns nil.

e A flag specifying the type of operation.

There are three flag values for three operations:

e nil specifies try-completion. The completion function should return the completion of the
specified string, or t if the string is an exact match already, or nil if the string matches no
possibility.

e t specifies all-completions. The completion function should return a list of all possible
completions of the specified string.

e lambda specifies a test for an exact match. The completion function should return t if the
specified string is an exact match for some possibility; nil otherwise.

It would be consistent and clean for completion functions to allow lambda expressions (lists
which are functions) as well as function symbols as collection, but this is impossible. Lists as
completion tables are already assigned another meaning—as alists. It would be unreliable to fail
to handle an alist normally because it is also a possible function. So you must arrange for any
function you wish to use for completion to be encapsulated in a symbol.

Emacs uses programmed completion when completing file names. See Section 22.10.6 [File Name
Completion], page 413.

274 GNU Emacs Lisp Reference Manual

17.5.3 Completion and the Minibuffer

This section describes the basic interface for reading from the minibuffer with completion.

completing-read prompt collection &optional predicate require-match Function
initial hist
This function reads a string in the minibuffer, assisting the user by providing comple-
tion. It activates the minibuffer with prompt prompt, which must be a string. If initial
is non-nil, completing-read inserts it into the minibuffer as part of the input. Then
it allows the user to edit the input, providing several commands to attempt completion.

The actual completion is done by passing collection and predicate to the function try-
completion. This happens in certain commands bound in the local keymaps used for
completion.

If require-match is t, the user is not allowed to exit unless the input completes to an
element of collection. If require-match is neither nil nor t, then completing-read does
not exit unless the input typed is itself an element of collection. To accomplish this,
completing-read calls read-minibuffer. It uses the value of minibuffer-local-
completion-map as the keymap if require-match is nil, and uses minibuffer-local-

must-match-map if require-match is non-nil.

The argument hist specifies which history list variable to use for saving the input and
for minibuffer history commands. It defaults to minibuffer-history. See Section 17.4
[Minibuffer History], page 268.

Case is ignored when comparing the input against the possible matches if the built-in
variable completion-ignore-case is non-nil. See Section 17.5.1 [Basic Completion],
page 270.

For example:

(completing-read

"Complete a foo: "

>(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
nil t "fo")

Chapter 17: Minibuffers 275

;3 After evaluating the preceding expression,
;3 the following appears in the minibuffer:
—————————— Buffer: Minibuffer —--—-—-—--—-

Complete a foo: fox
—————————— Buffer: Minibuffer ----------

If the user then types DEL DEL b RET, completing-read returns barfoo.

The completing-read function binds three variables to pass information to the com-

mands which actually do completion. Here they are:

minibuffer-completion-table
This variable is bound to the collection argument. It is passed to the

try-completion function.
minibuffer-completion-predicate
This variable is bound to the predicate argument. It is passed to the
try-completion function.
minibuffer-completion-confirm
This variable is bound to the require-match argument. It is used in the

minibuffer-complete-and-exit function.

17.5.4 Minibuffer Commands That Do Completion

This section describes the keymaps, commands and user options used in the minibuffer to do

completion.

minibuffer-local-completion-map Variable
completing-read uses this value as the local keymap when an exact match of one of
the completions is not required. By default, this keymap makes the following bindings:

7 minibuffer-completion-help
SPC minibuffer-complete-word
TAB minibuffer-complete

with other characters bound as in minibuffer-local-map.

276 GNU Emacs Lisp Reference Manual

minibuffer-local-must-match-map Variable
completing-read uses this value as the local keymap when an exact match of one of
the completions is required. Therefore, no keys are bound to exit-minibuffer, the
command which exits the minibuffer unconditionally. By default, this keymap makes
the following bindings:

? minibuffer-completion-help
SPC minibuffer-complete-word
TAB minibuffer-complete

LFD minibuffer-complete-and-exit
RET minibuffer-complete-and-exit

with other characters bound as in minibuffer-local-map.

minibuffer-completion-table Variable
The value of this variable is the alist or obarray used for completion in the minibuf-
fer. This is the global variable that contains what completing-read passes to try-
completion. It is used by all the minibuffer completion functions, such as minibuffer-

complete-word.

minibuffer-completion-predicate Variable
This variable’s value is the predicate that completing-read passes to try-completion.
The variable is also used by the other minibuffer completion functions.

minibuffer-complete-word Command
This function completes the minibuffer contents by at most a single word. Even if
the minibuffer contents have only one completion, minibuffer-complete-word does
not add any characters beyond the first character that is not a word constituent. See
Chapter 31 [Syntax Tables], page 583.

minibuffer-complete Command
This function completes the minibuffer contents as far as possible.

Chapter 17: Minibuffers 277

minibuffer-complete-and-exit Command
This function completes the minibuffer contents, and exits if confirmation is not re-
quired, i.e., if minibuffer-completion-confirm is non-nil. If confirmation is re-

quired, it is given by repeating this command immediately.

minibuffer-completion-confirm Variable
When the value of this variable is non-nil, Emacs asks for confirmation of a completion
before exiting the minibuffer. The function minibuffer-complete-and-exit checks

the value of this variable before it exits.

minibuffer-completion-help Command
This function creates a list of the possible completions of the current minibuf-
fer contents. It works by calling all-completions using the value of the vari-
able minibuffer-completion-table as the collection argument, and the value of
minibuffer-completion-predicate as the predicate argument. The list of comple-
tions is displayed as text in a buffer named ‘*Completions*’.

display-completion-list completions Function
This function displays completions to the stream in standard-output, usually a buffer.
(See Chapter 16 [Streams], page 251, for more information about streams.) The argu-
ment completions is normally a list of completions just returned by all-completions,
but it does not have to be. Each element may be a symbol or a string, either of
which is simply printed, or a list of two strings, which is printed as if the strings were

concatenated.

This function is called by minibuffer-completion-help. The most common way to
use it is together with with-output-to-temp-buffer, like this:

(with-output-to-temp-buffer " *Completions*"
(display-completion-list
(all-completions (buffer-string) my-alist)))

completion-auto-help User Option
If this variable is non-nil, the completion commands automatically display a list of
possible completions whenever nothing can be completed because the next character is

not uniquely determined.

278 GNU Emacs Lisp Reference Manual

17.5.5 High-Level Completion Functions

This section describes the higher-level convenient functions for reading certain sorts of names

with completion.

read-buffer prompt &optional default existing Function
This function reads the name of a buffer and returns it as a string. The argument
default is the default name to use, the value to return if the user exits with an empty
minibuffer. If non-nil, it should be a string. It is mentioned in the prompt, but is not

inserted in the minibuffer as initial input.

If existing is non-nil, then the name specified must be that of an existing buffer. The
usual commands to exit the minibuffer do not exit if the text is not valid, and RET does
completion to attempt to find a valid name. (However, default is not checked for this;

it is returned, whatever it is, if the user exits with the minibuffer empty.)

In the following example, the user enters ‘minibuffer.t’, and then types RET. The
argument existing is t, and the only buffer name starting with the given input is

‘minibuffer.texi’, so that name is the value.

(read-buffer "Buffer name? " "foo" t)

;3 After evaluating the preceding expression,
;3 the following prompt appears,

;3 with an empty minibuffer:

—————————— Buffer: Minibuffer —--—-—-—--—-
Buffer name? (default foo) x

—————————— Buffer: Minibuffer ----------

;3 The user types minibuffer.t RET.

= "minibuffer.texi"

read-command prompt Function
This function reads the name of a command and returns it as a Lisp symbol. The
argument prompt is used as in read-from-minibuffer. Recall that a command is
anything for which commandp returns t, and a command name is a symbol for which
commandp returns t. See Section 18.3 [Interactive Call], page 294.

(read-command "Command name? ")

Chapter 17: Minibuffers 279

;3 After evaluating the preceding expression,
;3 the following appears in the minibuffer:
—————————— Buffer: Minibuffer ----------
Command name?

—————————— Buffer: Minibuffer --——————--

If the user types forward-c RET, then this function returns forward-char.

The read-command function is a simplified interface to the completing-read function.
It uses the commandp predicate to allow only commands to be entered, and it uses the
variable obarray so as to be able to complete all extant Lisp symbols:

(read-command prompt)

(intern (completing-read prompt obarray ’commandp t nil))

read-variable prompt Function
This function reads the name of a user variable and returns it as a symbol.

(read-variable "Variable name? ")

;3 After evaluating the preceding expression,
M the following prompt appears,
;3 with an empty minibuffer:

—————————— Buffer: Minibuffer ----------
Variable name? x

—————————— Buffer: Minibuffer --——————--

If the user then types £ill-p RET, read-variable will return fill-prefix.

This function is similar to read-command, but uses the predicate user-variable-p

instead of commandp:

(read-variable prompt)

(intern
(completing-read prompt obarray ’user-variable-p t nil))

280 GNU Emacs Lisp Reference Manual

17.5.6 Reading File Names

Here is another high-level completion function, designed for reading a file name. It provides
special features including automatic insertion of the default directory.

read-file-name prompt &optional directory default existing initial Function
This function reads a file name in the minibuffer, prompting with prompt and providing
completion. If default is non-nil, then the function returns default if the user just types
RET.

If existing is non-nil, then the name must refer to an existing file; then RET performs
completion to make the name valid if possible, and then refuses to exit if it is not valid.
If the value of existing is neither nil nor t, then RET also requires confirmation after

completion.

The argument directory specifies the directory to use for completion of relative file
names. Usually it is inserted in the minibuffer as initial input as well. It defaults to

the current buffer’s default directory.

If you specify initial, that is an initial file name to insert in the buffer along with
directory. In this case, point goes after directory, before initial. The default for initial
is nil—don’t insert any file name. To see what initial does, try the command C-x C-v.

Here is an example:

(read-file—-name "The file is ")

;3 After evaluating the preceding expression,
H the following appears in the minibuffer:
—————————— Buffer: Minibuffer --—————-—-
The file is /gp/gnu/elisp/*

—————————— Buffer: Minibuffer ----—------

Typing manual TAB results in the following:

—————————— Buffer: Minibuffer - ———————-
The file is /gp/gnu/elisp/manual.texix
—————————— Buffer: Minibuffer ----------

Chapter 17: Minibuffers 281

If the user types RET, read-file-name returns "/gp/gnu/elisp/manual .texi".

insert-default-directory User Option
This variable is used by read-file-name. Its value controls whether read-file-name
starts by placing the name of the default directory in the minibuffer, plus the initial
file name if any. If the value of this variable is nil, then read-file-name does not
place any initial input in the minibuffer. In that case, the default directory is still used
for completion of relative file names, but is not displayed.

For example:
; 3 Here the minibuffer starts out containing the default directory.

(let ((insert-default-directory t))
(read-file-name "The file is "))

—————————— Buffer: Minibuffer ----------

The file is “lewis/manual/x

—————————— Buffer: Minibuffer --—————-—-

; ;5 Here the minibuffer is empty and only the prompt

H appears on its line.

(let ((insert-default-directory nil))

(read-file-name "The file is "))

—————————— Buffer: Minibuffer ----------
The file is %
—————————— Buffer: Minibuffer --——————--

17.5.7 Lisp Symbol Completion

If you type a part of a symbol, and then type M-TAB (lisp-complete-symbol), this command
attempts to fill in as much more of the symbol name as it can. Not only does this save typing, but
it can help you with the name of a symbol that you have partially forgotten.

lisp-complete-symbol Command
This function performs completion on the symbol name preceding point. The name is
completed against the symbols in the global variable obarray, and characters from the
completion are inserted into the buffer, making the name longer. If there is more than

282 GNU Emacs Lisp Reference Manual

one completion, a list of all possible completions is placed in the ‘*Help#’ buffer. The

bell rings if there is no possible completion in obarray.

If an open parenthesis immediately precedes the name, only symbols with function
definitions are considered. (By reducing the number of alternatives, this may succeed
in completing more characters.) Otherwise, symbols with either a function definition,
a value, or at least one property are considered.

lisp-complete-symbol returns t if the symbol had an exact, and unique, match;

otherwise, it returns nil.

In the following example, the user has already inserted ‘ (forwa’ into the buffer ‘foo.el’.

The command lisp-complete-symbol then completes the name to ‘(forward-’.

—————————— Buffer: foo.el ————--—-—-
(1isp-complete-symbol)

= nil
—————————— Buffer: foo.el -—-————----

(forward-*
—————————— Buffer: foo.el ————--—-—-

17.6 Yes-or-No Queries

This section describes functions used to ask the user a yes-or-no question. The function y-or-
n-p can be answered with a single character; it is useful for questions where an inadvertent wrong
answer will not have serious consequences. yes-or-no-p is suitable for more momentous questions,

since it requires three or four characters to answer.

Strictly speaking, yes—or-no-p uses the minibuffer and y-or-n-p does not; but it seems best
to describe them together.

y-or-n-p prompt Function
This function asks the user a question, expecting input in the echo area. It returns t
if the user types y, nil if the user types n. This function also accepts SPC to mean

yes and DEL to mean no. It accepts C-] to mean “quit”, like C-g, because the question

Chapter 17: Minibuffers 283

might look like a minibuffer and for that reason the user might try to use C-] to get
out. The answer is a single character, with no RET needed to terminate it. Upper and

lower case are equivalent.

“Asking the question” means printing prompt in the echo area, followed by the string
‘(y or n) ’. If the input is not one of the expected answers (y, n, SPC, DEL, or something

that quits), the function responds ‘Please answer y or n.’, and repeats the request.

This function does not actually use the minibuffer, since it does not allow editing of the
answer. It actually uses the echo area (see Section 35.4 [The Echo Areal, page 649),
which uses the same screen space as the minibuffer. The cursor moves to the echo area
while the question is being asked.

The meanings of answers, even ‘y’ and ‘n’, are not hardwired. They are controlled by
the keymap query-replace-map. See Section 30.4 [Replacement|, page 573.

In the following example, the user first types q, which is invalid. At the next prompt
the user types n.

(y-or-n-p "Do you need a 1lift? ")

;3 After evaluating the preceding expression,

;3 the following prompt appears in the echo area:
—————————— Echo area ----------

Do you need a 1ift? (y or n)

—————————— Echo area ----------

;5 If the user then types q, the following appears:

—————————— Echo area ----------
Please answer y or n. Do you need a lift? (y or n)
—————————— Echo area ----------

;5 When the user types a valid answer,
e it is displayed after the question:

—————————— Echo area ----------
Do you need a 1ift? (y or n) y
—————————— Echo area ----------

Note that we show successive lines of echo area messages here. Only one actually

appears on the screen at a time.

284 GNU Emacs Lisp Reference Manual

yes-or-no-p prompt Function
This function asks the user a question, expecting input in minibuffer. It returns t if
the user enters ‘yes’, nil if the user types ‘no’. The user must type RET to finalize the
response. Upper and lower case are equivalent.

yes—-or-no-p starts by displaying prompt in the echo area, followed by ‘(yes or no) ’.
The user must type one of the expected responses; otherwise, the function responds

‘Please answer yes or no.’, waits about two seconds and repeats the request.

yes-or-no-p requires more work from the user than y-or-n-p and is appropriate for

more crucial decisions.

Here is an example:

(yes-or-no-p "Do you really want to remove everything? ")

;3 After evaluating the preceding expression,

M the following prompt appears,

3 with an empty minibuffer:

—————————— Buffer: minibuffer ----------

Do you really want to remove everything? (yes or no)

—————————— Buffer: minibuffer - -—————-—--

If the user first types y RET, which is invalid because this function demands the entire
word ‘yes’, it responds by displaying these prompts, with a brief pause between them:

—————————— Buffer: minibuffer ----———--—-

Please answer yes or no.

Do you really want to remove everything? (yes or no)
—————————— Buffer: minibuffer ----——--—-

17.7 Asking Multiple Y-or-N Queries

map-y-or-n-p prompter actor list &optional help action-alist Function
This function, new in Emacs 19, asks the user a series of questions, reading a single-

character answer in the echo area for each one.

Chapter 17: Minibuffers 285

The value of list specifies what varies from question to question within the series. It
should be either a list of objects or a generator function. If it is a function, it should
expect no arguments, and should return either the next object or nil meaning there

are no more questions.

The argument prompter specifies how to ask each question. If prompter is a string,

the question text is computed like this:

(format prompter object)

where object is the next object to ask about (as obtained from list).

If not a string, prompter should be a function of one argument (the next object to ask
about) and should return the question text.

The argument actor says how to act on the answers that the user gives. It should be a
function of one argument, and it is called with each object that the user says yes for.

Its argument is always an object obtained from list.

If the argument help is given, it should be a list of this form:

(singular plural action)

where singular is a string containing a singular noun that describes the objects concep-
tually being acted on, plural is the corresponding plural noun, and action is a transitive
verb describing what actor does.

If you don’t specify help, the default is ("object" "objects" "act on").

Each time a question is asked, the user may enter y, Y, or SPC to act on that object; n,
N, or DEL to skip that object; ! to act on all following objects; ESC or q to exit (skip all
following objects); . (period) to act on the current object and then exit; or C-h to get
help. These are the same answers that query-replace accepts. The keymap query-
replace-map defines their meaning for map-y-or-n-p as well as for query-replace;
see Section 30.4 [Replacement], page 573.

You can use action-alist to specify additional possible answers and what they mean.
It is an alist of elements of the form (char function help), each of which defines one

286 GNU Emacs Lisp Reference Manual

additional answer. In this element, char is a character (the answer); function is a
function of one argument (an object from list); help is a string.

When the user responds with char, map-y-or-n-p calls function. If it returns non-nil,
the object is considered “acted upon”, and map-y-or-n-p advances to the next object
in list. If it returns nil, the prompt is repeated for the same object.

The return value of map-y-or-n-p is the number of objects acted on.

17.8 Minibuffer Miscellany

This section describes some basic functions and variables related to minibuffers.

exit-minibuffer Command
This command exits the active minibuffer. It is normally bound to keys in minibuffer
local keymaps.

self-insert-and-exit Command
This command exits the active minibuffer after inserting the last character typed on
the keyboard (found in last-command-char; see Section 18.4 [Command Loop Infol,
page 297).

previous-history-element n Command
This command replaces the minibuffer contents with the value of the nth previous

(older) history element.

next-history-element n Command
This command replaces the minibuffer contents with the value of the nth more recent

history element.

previous-matching-history-element pattern Command
This command replaces the minibuffer contents with the value of the previous (older)
history element that matches pattern. At the time of printing, we have not made a
final decision about how to get the pattern interactively or how to match it against

history elements.

Chapter 17: Minibuffers 287

next-matching-history-element pattern Command
This command replaces the minibuffer contents with the value of the next (newer)

history element that matches pattern.

minibuffer-help-form Variable
The current value of this variable is used to rebind help-form locally inside the mini-
buffer (see Section 21.5 [Help Functions], page 382).

minibuffer-window &optional frame Function
This function returns the window that is used for the minibuffer. In Emacs 18, there is
one and only one minibuffer window; this window always exists and cannot be deleted.
In Emacs 19, each frame can have its own minibuffer, and this function returns the mini-
buffer window used for frame frame (which defaults to the currently selected frame).

window-minibuffer-p window Function
This function returns non-nil if window is a minibuffer window.

It is not correct to determine whether a given window is a minibuffer by comparing it with the
result of (minibuffer-window), because there can be more than one minibuffer window there is
more than one frame.

minibuffer-scroll-window Variable
If the value of this variable is non-nil, it should be a window object. When the function
scroll-other-window is called in the minibuffer, it scrolls this window.

Finally, some functions and variables deal with recursive minibuffers (see Section 18.10 [Recur-
sive Editing], page 321):

minibuffer-depth Function
This function returns the current depth of activations of the minibuffer, a nonnegative

integer. If no minibuffers are active, it returns zero.

enable-recursive-minibuffers User Option
If this variable is non-nil, you can invoke commands (such as find-file) which use

minibuffers even while in the minibuffer window. Such invocation produces a recursive

288 GNU Emacs Lisp Reference Manual

editing level for a new minibuffer. The outer-level minibuffer is invisible while you are
editing the inner one.

This variable only affects invoking the minibuffer while the minibuffer window is se-
lected. If you switch windows while in the minibuffer, you can always invoke minibuffer
commands while some other window is selected.

If a command name has a property enable-recursive-minibuffers which is non-nil, then the
command can use the minibuffer to read arguments even if it is invoked from the minibuffer. The
minibuffer command next-matching-history-element (normally bound to M-s in the minibuffer)
uses this feature.

Chapter 18: Command Loop 289

18 Command Loop

When you run Emacs, it enters the editor command loop almost immediately. This loop reads
key sequences, executes their definitions, and displays the results. In this chapter, we describe how
these things are done, and the subroutines that allow Lisp programs to do them.

18.1 Command Loop Overview

The first thing the command loop must do is read a key sequence, which is a sequence of events
that translates into a command. It does this by calling the function read-key-sequence. Your
Lisp code can also call this function (see Section 18.6.1 [Key Sequence Input], page 310). Lisp
programs can also do input at a lower level with read-event (see Section 18.6.2 [Reading One
Event|, page 312) or discard pending input with discard-input (see Section 18.6.4 [Peeking and
Discarding], page 314).

The key sequence is translated into a command through the currently active keymaps. See
Section 19.8 [Key Lookup], page 340, for information on how this is done. The result should be
a keyboard macro or an interactively callable function. If the key is M-x, then it reads the name
of another command, which is used instead. This is done by the command execute-extended-
command (see Section 18.3 [Interactive Call], page 294).

Once the command is chosen, it must be executed, which includes reading arguments to be given
to it. This is done by calling command-execute (see Section 18.3 [Interactive Call], page 294). For
commands written in Lisp, the interactive specification says how to read the arguments. This
may use the prefix argument (see Section 18.9 [Prefix Command Arguments|, page 319) or may
read with prompting in the minibuffer (see Chapter 17 [Minibuffers], page 263). For example, the
command find-file has an interactive specification which says to read a file name using the
minibuffer. The command’s function body does not use the minibuffer; if you call this command
from Lisp code as a function, you must supply the file name string as an ordinary Lisp function

argument.

If the command is a string or vector (i.e., a keyboard macro) then execute-kbd-macro is used
to execute it. You can call this function yourself (see Section 18.13 [Keyboard Macros|, page 325).

If a command runs away, typing C-g terminates its execution immediately. This is called quitting
(see Section 18.8 [Quitting], page 317).

290 GNU Emacs Lisp Reference Manual

pre-command-hook Variable

The editor command loop runs this normal hook before each command.

post-command-hook Variable
The editor command loop runs this normal hook after each command.

18.2 Defining Commands

A Lisp function becomes a command when its body contains, at top level, a form which calls
the special form interactive. This form does nothing when actually executed, but its presence
serves as a flag to indicate that interactive calling is permitted. Its argument controls the reading

of arguments for an interactive call.

18.2.1 Using interactive

This section describes how to write the interactive form that makes a Lisp function an

interactively-callable command.

interactive arg-descriptor Special Form
This special form declares that the function in which it appears is a command, and that
it may therefore be called interactively (via M-x or by entering a key sequence bound
to it). The argument arg-descriptor declares the way the arguments to the command
are to be computed when the command is called interactively.

A command may be called from Lisp programs like any other function, but then the
arguments are supplied by the caller and arg-descriptor has no effect.

The interactive form has its effect because the command loop (actually, its subrou-
tine call-interactively) scans through the function definition looking for it, before
calling the function. Once the function is called, all its body forms including the
interactive form are executed, but at this time interactive simply returns nil
without even evaluating its argument.

There are three possibilities for the argument arg-descriptor:

Chapter 18: Command Loop 291

e It may be omitted or nil; then the command is called with no arguments. This leads quickly

to an error if the command requires one or more arguments.

e It may be a Lisp expression that is not a string; then it should be a form that is evaluated to

get a list of arguments to pass to the command.

e It may be a string; then its contents should consist of a code character followed by a prompt
(which some code characters use and some ignore). The prompt ends either with the end of
the string or with a newline. Here is a simple example:

(interactive "bFrobnicate buffer: ")

The code letter ‘b’ says to read the name of an existing buffer, with completion. The buffer

name is the sole argument passed to the command. The rest of the string is a prompt.

If there is a newline character in the string, it terminates the prompt. If the string does not end
there, then the rest of the string should contain another code character and prompt, specifying
another argument. You can specify any number of arguments in this way.

The prompt string can use ‘%’ to include previous argument values in the prompt. This is done

using format (see Section 4.6 [Formatting Strings|, page 68). For example, here is how you

could read the name of an existing buffer followed by a new name to give to that buffer:
(interactive "bBuffer to rename: \nsRename buffer %s to: ")

If the first character in the string is ‘*’, then an error is signaled if the buffer is read-only.

If the first character in the string is ‘@’, and if the key sequence used to invoke the command

includes any mouse events, then the window associated with the first of those events is selected

before the command is run.

You can use ‘*’ and ‘@ together; the order does not matter. Actual reading of arguments is

controlled by the rest of the prompt string (starting with the first character that is not ‘*’ or
4@7).

18.2.2 Code Characters for interactive
The code character descriptions below contain a number of key words, defined here as follows:

Completion
Provide completion. TAB, SPC, and RET perform name completion because the argument
is read using completing-read (see Section 17.5 [Completion], page 269). 7 displays
a list of possible completions.

Existing Require the name of an existing object. An invalid name is not accepted; the commands
to exit the minibuffer do not exit if the current input is not valid.

Default A default value of some sort is used if the user enters no text in the minibuffer. The
default depends on the code character.

292

No I/0

Prompt

Special

GNU Emacs Lisp Reference Manual

This code letter computes an argument without reading any input. Therefore, it does

not use a prompt string, and any prompt string you supply is ignored.

A prompt immediately follows the code character. The prompt ends either with the
end of the string or with a newline.

This code character is meaningful only at the beginning of the interactive string, and
it does not look for a prompt or a newline. It is a single, isolated character.

Here are the code character descriptions for use with interactive:

Signal an error if the current buffer is read-only. Special.

Select the window mentioned in the first mouse event in the key sequence that invoked
this command. Special.

A function name (i.e., a symbol which is fboundp). Existing, Completion, Prompt.

The name of an existing buffer. By default, uses the name of the current buffer (see
Chapter 24 [Buffers|, page 429). Existing, Completion, Default, Prompt.

A buffer name. The buffer need not exist. By default, uses the name of a recently used
buffer other than the current buffer. Completion, Prompt.

A character. The cursor does not move into the echo area. Prompt.
A command name (i.e., a symbol satisfying commandp). Existing, Completion, Prompt.
The position of point as a number (see Section 27.1 [Point], page 491). No I/O.

A directory name. The default is the current default directory of the current buffer,
default-directory (see Section 34.3 [System Environment|, page 632). Existing,
Completion, Default, Prompt.

The first or next mouse event in the key sequence that invoked the command. More
precisely, ‘e’ gets events which are lists, so you can look at the data in the lists. See
Section 18.5 [Input Events], page 299. No I/O.

You can use ‘e’ more than once in a single command’s interactive specification. If the
key sequence which invoked the command has n events with parameters, the nth ‘e’
provides the nth list event. Events which are not lists, such as function keys and ASCII
characters, do not count where ‘e’ is concerned.

Even though ‘e’ does not use a prompt string, you must follow it with a newline if it
is not the last code character.

A file name of an existing file (see Section 22.10 [File Names], page 406). The default
directory is default-directory. Existing, Completion, Default, Prompt.

A file name. The file need not exist. Completion, Default, Prompt.

Chapter 18: Command Loop 293

A key sequence (see Section 19.1 [Keymap Terminology], page 327). This keeps reading
events until a command (or undefined command) is found in the current key maps. The
key sequence argument is represented as a string or vector. The cursor does not move
into the echo area. Prompt.

This kind of input is used by commands such as describe-key and global-set-key.
The position of the mark as a number. No I/O.

A number read with the minibuffer. If the input is not a number, the user is asked to
try again. The prefix argument, if any, is not used. Prompt.

The raw prefix argument. If the prefix argument is nil, then a number is read as with
n. Requires a number. Prompt.

The numeric prefix argument. (Note that this ‘p’ is lower case.) No I/O.

The raw prefix argument. (Note that this ‘P’ is upper case.) See Section 18.9 [Prefix
Command Arguments], page 319. No I/0.

Point and the mark, as two numeric arguments, smallest first. This is the only code
letter that specifies two successive arguments rather than one. No I/0.

Arbitrary text, read in the minibuffer and returned as a string (see Section 17.2 [Text
from Minibuffer], page 264). Terminate the input with either LFD or RET. (C-q may be
used to include either of these characters in the input.) Prompt.

An interned symbol whose name is read in the minibuffer. Any whitespace character
terminates the input. (Use C-q to include whitespace in the string.) Other characters
that normally terminate a symbol (e.g., parentheses and brackets) do not do so here.
Prompt.

A variable declared to be a user option (i.e., satisfying the predicate user-variable-p).
See Section 17.5.5 [High-Level Completion], page 278. Existing, Completion, Prompt.

A Lisp object specified in printed representation, terminated with a LFD or RET. The
object is not evaluated. See Section 17.3 [Object from Minibuffer|, page 267. Prompt.

A Lisp form is read as with x, but then evaluated so that its value becomes the argument
for the command. Prompt.

18.2.3 Examples of Using interactive

Here are some examples of interactive:

294 GNU Emacs Lisp Reference Manual

(defun fool () ; fool takes no arguments,
(interactive) ; just moves forward two words.
(forward-word 2))

= fool

(defun foo2 (n) ; foo2 takes one argument,
(interactive "p") ; which is the numeric prefix.
(forward-word (* 2 n)))

= foo2

(defun foo3 (n) ; foo3 takes one argument,
(interactive "nCount:") ; which is read with the Minibuffer.
(forward-word (* 2 n)))

= foo3

(defun three-b (bl b2 b3)

"Select three existing buffers.

Put them into three windows, selecting the last one."
(interactive "bBufferl:\nbBuffer2:\nbBuffer3:")
(delete-other-windows)

(split-window (selected-window) 8)
(switch-to-buffer bil)
(other-window 1)
(split-window (selected-window) 8)
(switch-to-buffer b2)
(other-window 1)
(switch-to-buffer b3))
= three-b
(three-b "xscratch*" "declarations.texi" "*xmailx*")

= nil

18.3 Interactive Call

After the command loop has translated a key sequence into a definition, it invokes that definition
using the function command-execute. If the definition is a function that is a command, command-
execute calls call-interactively, which reads the arguments and calls the command. You can

also call these functions yourself.

commandp object Function
Returns t if object is suitable for calling interactively; that is, if object is a command.

Otherwise, returns nil.

Chapter 18: Command Loop 295

The interactively callable objects include strings and vectors (treated as keyboard
macros), lambda expressions that contain a top-level call to interactive, byte-code
function objects, autoload objects that are declared as interactive (non-nil fourth ar-
gument to autoload), and some of the primitive functions.

A symbol is commandp if its function definition is commandp.

Keys and keymaps are not commands. Rather, they are used to look up commands
(see Chapter 19 [Keymaps]|, page 327).

See documentation in Section 21.2 [Accessing Documentation], page 376, for a realistic

example of using commandp.

call-interactively command &optional record-flag Function
This function calls the interactively callable function command, reading arguments
according to its interactive calling specifications. An error is signaled if command
cannot be called interactively (i.e., it is not a command). Note that keyboard macros
(strings and vectors) are not accepted, even though they are considered commands.

If record-flag is non-nil, then this command and its arguments are unconditionally
added to the list command-history. Otherwise, the command is added only if it uses
the minibuffer to read an argument. See Section 18.12 [Command History|, page 324.

command-execute command &optional record-flag Function
This function executes command as an editing command. The argument command
must satisfy the commandp predicate; i.e., it must be an interactively callable function

or a string.

A string or vector as command is executed with execute-kbd-macro. A function is

passed to call-interactively, along with the optional record-flag.

A symbol is handled by using its function definition in its place. A symbol with an
autoload definition counts as a command if it was declared to stand for an interactively
callable function. Such a definition is handled by loading the specified library and then
rechecking the definition of the symbol.

296 GNU Emacs Lisp Reference Manual

execute-extended-command prefix-argument Command
This function reads a command name from the minibuffer using completing-read
(see Section 17.5 [Completion|, page 269). Then it uses command-execute to call the
specified command. Whatever that command returns becomes the value of execute-
extended-command.

If the command asks for a prefix argument, the value prefix-argument is supplied. If
execute-extended-command is called interactively, the current raw prefix argument is

used for prefix-argument, and thus passed on to whatever command is run.

9

execute-extended-command is the normal definition of M-x, so it uses the string ‘M-x
as a prompt. (It would be better to take the prompt from the events used to invoke
execute-extended-command, but that is painful to implement.) A description of the
value of the prefix argument, if any, also becomes part of the prompt.

(execute-extended-command 1)

—————————— Buffer: Minibuffer ----------
M-x forward-word RET

—————————— Buffer: Minibuffer --—————-—-

interactive-p Function
This function returns t if the containing function (the one that called interactive-p)
was called interactively, with the function call-interactively. (It makes no differ-
ence whether call-interactively was called from Lisp or directly from the editor
command loop.) Note that if the containing function was called by Lisp evaluation (or
with apply or funcall), then it was not called interactively.

The usual application of interactive-p is for deciding whether to print an informative
message. As a special exception, interactive-p returns nil whenever a keyboard
macro is being run. This is to suppress the informative messages and speed execution
of the macro.

For example:

Chapter 18: Command Loop 297

(defun foo ()
(interactive)
(and (interactive-p)
(message "foo")))
= foo

(defun bar ()
(interactive)
(setq foobar (list (foo) (interactive-p))))
= bar
;5 Type M-x foo.
- foo
;35 Type M-x bar.
;3 This does not print anything.
foobar
= (nil t)

18.4 Information from the Command Loop

The editor command loop sets several Lisp variables to keep status records for itself and for
commands that are run.

last-command Variable
This variable records the name of the previous command executed by the command
loop (the one before the current command). Normally the value is a symbol with a
function definition, but this is not guaranteed.

The value is set by copying the value of this-command when a command returns to the
command loop, except when the command specifies a prefix argument for the following
command.

this-command Variable
This variable records the name of the command now being executed by the editor

command loop. Like last-command, it is normally a symbol with a function definition.

This variable is set by the command loop just before the command is run, and its value
is copied into last-command when the command finishes (unless the command specifies
a prefix argument for the following command).

298 GNU Emacs Lisp Reference Manual

Some commands change the value of this variable during their execution, simply as a
flag for whatever command runs next. In particular, the functions that kill text set
this-command to kill-region so that any kill commands immediately following will
know to append the killed text to the previous kill.

this-command-keys Function
This function returns a string or vector containing the key sequence that invoked the
present command, plus any previous commands that generated the prefix argument for
this command. The value is a string if all those events were characters. See Section 18.5
[Input Events|, page 299.

(this-command-keys)
;5 Now type C-u C-x C-e.
= ""U"X"E"

last-nonmenu-event Variable
This variable holds the last input event read as part of a key sequence, aside from
events resulting from mouse menus.

One use of this variable is to figure out a good default location to pop up another menu.

last-command-event Variable
last-command-char Variable
This variable is set to the last input event that was read by the command loop as part
of a command. The principal use of this variable is in self-insert-command, which
uses it to decide which character to insert.

last-command-char
;5 Now type C-u C-x C-e.

= 5

The value is 5 because that is the ASCII code for C-e.

The alias last-command-char exists for compatibility with Emacs version 18.

last-event-frame Variable
This variable records which frame the last input event was directed to. Usually this
is the frame that was selected when the event was generated, but if that frame has

Chapter 18: Command Loop 299

redirected input focus to another frame, the value is the frame to which the event was
redirected. See Section 26.7 [Input Focus], page 480.

echo-keystrokes Variable
This variable determines how much time should elapse before command characters
echo. Its value must be an integer, which specifies the number of seconds to wait
before echoing. If the user types a prefix key (say C-x) and then delays this many
seconds before continuing, the key C-x is echoed in the echo area. Any subsequent

characters in the same command will be echoed as well.

If the value is zero, then command input is not echoed.

18.5 Input Events

The Emacs command loop reads a sequence of input events that represent keyboard or mouse
activity. The events for keyboard activity are characters or symbols; mouse events are always lists.

This section describes the representation and meaning of input events in detail.

A command invoked using events that are lists can get the full values of these events using the
‘e’ interactive code. See Section 18.2.2 [Interactive Codes|, page 291.

A key sequence that starts with a mouse event is read using the keymaps of the buffer in the
window that the mouse was in, not the current buffer. This does not imply that clicking in a window
selects that window or its buffer—that is entirely under the control of the command binding of the

key sequence.

eventp object Function
This function returns non-nil if event is an input event.

18.5.1 Keyboard Events

There are two kinds of input you can get from the keyboard: ordinary keys, and function
keys. Ordinary keys correspond to characters; the events they generate are represented in Lisp as

characters. In Emacs versions 18 and earlier, characters were the only events.

300 GNU Emacs Lisp Reference Manual

An input character event consists of a basic code between 0 and 255, plus any or all of these
modifier bits:

meta The 2**23 bit in the character code indicates a character typed with the meta key held
down.
control The 2*¥*22 bit in the character code indicates a non-ASCII control character.

ASCII control characters such as C-a have special basic codes of their own, so Emacs
needs no special bit to indicate them. Thus, the code for C-a is just 1.

But if you type a control combination not in ASCII, such as % with the control key,
the numeric value you get is the code for % plus 2**22 (assuming the terminal supports
non-ASCII control characters).

shift The 2**21 bit in the character code indicates an ASCII control character typed with
the shift key held down.

For letters, the basic code indicates upper versus lower case; for digits and punctuation,
the shift key selects an entirely different character with a different basic code. In order
to keep within the ASCII character set whenever possible, Emacs avoids using the
2**21 bit for those characters.

However, ASCII provides no way to distinguish C-A from C-A, so Emacs uses the 2**21
bit in C-A and not in C-a.

hyper The 2**20 bit in the character code indicates a character typed with the hyper key
held down.

super The 2**19 bit in the character code indicates a character typed with the super key held
down.

alt The 2**18 bit in the character code indicates a character typed with the alt key held

down. (On some terminals, the key labeled ALT is actually the meta key.)

In the future, Emacs may support a larger range of basic codes. We may also move the modifier
bits to larger bit numbers. Therefore, you should avoid mentioning specific bit numbers in your
program. Instead, the way to test the modifier bits of a character is with the function event-
modifiers (see Section 18.5.9 [Classifying Events], page 306).

18.5.2 Function Keys

Most keyboards also have function keys—keys which have names or symbols that are not char-
acters. Function keys are represented in Lisp as symbols; the symbol’s name is the function key’s
label. For example, pressing a key labeled F1 places the symbol £1 in the input stream.

Chapter 18: Command Loop 301

For all keyboard events, the event type (which classifies the event for key lookup purposes) is
identical to the event—it is the character or the symbol. See Section 18.5.9 [Classifying Events],
page 306.

Here are a few special cases in the symbol naming convention for function keys:

backspace, tab, newline, return, delete
These keys correspond to common ASCII control characters that have special keys on

most keyboards.

In ASCII, C-i and TAB are the same character. Emacs lets you distinguish them if
you wish, by returning the former as the integer 9, and the latter as the symbol tab.

Most of the time, it’s not useful to distinguish the two. So normally function-key-
map is set up to map tab into 9. Thus, a key binding for character code 9 also applies
to tab. Likewise for the other symbols in this group. The function read-char also

converts these events into characters.

In ASCII, BS is really C-h. But backspace converts into the character code 127 (DEL),
not into code 8 (BS). This is what most users prefer.
kp-add, kp-decimal, kp—divide, ...
Keypad keys (to the right of the regular keyboard).
kp-0, kp-1, ...
Keypad keys with digits.
kp-£1, kp-£2, kp-£3, kp-£4
Keypad PF keys.
left, up, right, down

Cursor arrow keys

You can use the modifier keys CTRL, META, HYPER, SUPER, ALT and SHIFT with function keys.
The way to represent them is with prefixes in the symbol name:

‘A~ The alt modifier.
‘c-’ The control modifier.
‘H-’ The hyper modifier.
‘M-’ The meta modifier.
‘5=’ The shift modifier.

s— The super modifier.

302 GNU Emacs Lisp Reference Manual

Thus, the symbol for the key F3 with META held down is M-F3. When you use more than one
prefix, we recommend you write them in alphabetical order (though the order does not matter in
arguments to the key-binding lookup and modification functions).

18.5.3 Click Events

When the user presses a mouse button and releases it at the same location, that generates a
click event. Mouse click events have this form:

(event-type
(window bufler-pos
(column . row) timestamp))

Here is what the elements normally mean:

event-type This is a symbol that indicates which mouse button was used. It is one of the symbols
mouse-1, mouse-2, ..., where the buttons are numbered numbered left to right.

You can also use prefixes ‘A-’, ‘C=’, ‘H-’, ‘M-’, ‘S-’ and ‘s-’ for modifiers alt, control,
hyper, meta, shift and super, just as you would with function keys.
This symbol also serves as the event type of the event. Key bindings describe events

by their types; thus, if there is a key binding for mouse-1, that binding would apply to
all events whose event-type is mouse-1.

window This is the window in which the click occurred.
column
row These are the column and row of the click, relative to the top left corner of window,

which is (0 . 0).

buffer-pos This is the buffer position of the character clicked on.

timestamp
This is the time at which the event occurred, in milliseconds. (Since this value wraps
around the entire range of Emacs Lisp integers in about five hours, it is useful only for
relating the times of nearby events.)

The meanings of buffer-pos, row and column are somewhat different when the event location is
in a special part of the screen, such as the mode line or a scroll bar.

If the location is in a scroll bar, then buffer-pos is the symbol vertical-scroll-bar or
horizontal-scroll-bar, and the pair (column . row) is replaced with a pair (portion . whole),

Chapter 18: Command Loop 303

where portion is the distance of the click from the top or left end of the scroll bar, and whole is
the length of the entire scroll bar.

If the position is on a mode line or the vertical line separating window from its neighbor to the
right, then buffer-pos is the symbol mode-1ine or vertical-line. For the mode line, row does
not have meaningful data. For the vertical line, column does not have meaningful data.

18.5.4 Drag Events

With Emacs, you can have a drag event without even changing your clothes. A drag event
happens every time the user presses a mouse button and then moves the mouse to a different
character position before releasing the button. Like all mouse events, drag events are represented
in Lisp as lists. The lists record both the starting mouse position and the final position, like this:

(event-type
(windowl buffer-posl
(columnl . rowl) timestampl)
(window?2 bufter-pos2
(column2 . row2) timestamp2))

For a drag event, the name of the symbol event-type contains the prefix ‘drag-’. The second
and third elements of the event give the starting and ending position of the drag. Aside from that,
the data have the same meanings as in a click event (see Section 18.5.3 [Click Events], page 302).
You can access the second element of any mouse event in the same way, with no need to distinguish

drag events from others.
The ‘drag-’ prefix follows the modifier key prefixes such as ‘C-’ and ‘M-’.

If read-key-sequence receives a drag event which has no key binding, and the corresponding
click event does have a binding, it changes the drag event into a click event at the drag’s starting
position. This means that you don’t have to distinguish between click and drag events unless you

want to.

18.5.5 Button-Down Events

Click and drag events happen when the user releases a mouse button. They cannot happen
earlier, because there is no way to distinguish a click from a drag until the button is released.

304 GNU Emacs Lisp Reference Manual

If you want to take action as soon as a button is pressed, you need to handle button-down
events.!. These occur as soon as a button is pressed. They are represented by lists which look
exactly like click events (see Section 18.5.3 [Click Events|, page 302), except that the name of
event-type contains the prefix ‘down-’". The ‘down-’ prefix follows the modifier key prefixes such as
‘C-" and ‘M-.

The function read-key-sequence, and the Emacs command loop, ignore any button-down
events that don’t have command bindings. This means that you need not worry about defining
button-down events unless you want them to do something. The usual reason to define a button-
down event is so that you can track mouse motion (by reading motion events) until the button is

released.

18.5.6 Motion Events

Emacs sometimes generates mouse motion events to describe motion of the mouse without any
button activity. Mouse motion events are represented by lists that look like this:

(mouse-movement
(window bufler-pos
(column . row) timestamp))

The second element of the list describes the current position of the mouse, just as in a click
event (see Section 18.5.3 [Click Events], page 302).

The special form track-mouse enables generation of motion events within its body. Outside
of track-mouse forms, Emacs does not generate events for mere motion of the mouse, and these

events do not appear.

track-mouse body... Special Form
This special form executes body, with generation of mouse motion events enabled.
Typically body would use read-event to read the motion events and modify the display
accordingly.

When the user releases the button, that generates a click event. Normally body should
return when it sees the click event, and discard the event.

! Button-down is the conservative antithesis of drag.

Chapter 18: Command Loop 305

18.5.7 Focus Events

Window systems provide general ways for the user to control which window gets keyboard input.
This choice of window is called the focus. When the user does something to switch between Emacs
frames, that generates a focus event. The normal definition of a focus event, in the global keymap,
is to select a new frame within Emacs, as the user would expect. See Section 26.7 [Input Focus],
page 480.

Focus events are represented in Lisp as lists that look like this:

(switch-frame new-frame)
where new-frame is the frame switched to.

In X windows, most window managers are set up so that just moving the mouse into a window
is enough to set the focus there. Emacs appears to do this, because it changes the cursor to solid
in the new frame. However, there is no need for the Lisp program to know about the focus change
until some other kind of input arrives. So Emacs generates the focus event only when the user
actually types a keyboard key or presses a mouse button in the new frame; just moving the mouse

between frames does not generate a focus event.

A focus event in the middle of a key sequence would garble the sequence. So Emacs never
generates a focus event in the middle of a key sequence. If the user changes focus in the middle of
a key sequence—that is, after a prefix key—then Emacs reorders the events so that the focus event
comes either before or after the multi-event key sequence, and not within it.

18.5.8 Event Examples

If the user presses and releases the left mouse button over the same location, that generates a

sequence of events like this:

(down-mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864320))
(mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864180))

Or, while holding the control key down, the user might hold down the second mouse button,
and drag the mouse from one line to the next. That produces two events, as shown here:

(C-down-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219))

306 GNU Emacs Lisp Reference Manual

(C-drag-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219)
(#<window 18 on NEWS> 3510 (0 . 28) -729648))

Or, while holding down the meta and shift keys, the user might press the second mouse button
on the window’s mode line, and then drag the mouse into another window. That produces the
following pair of events:

(M-S-down-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844))

(M-S-drag-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844)
(#<window 20 on carlton-sanskrit.tex> 161 (33 . 3)
-453816))

18.5.9 Classifying Events

Every event has an event type which classifies the event for key binding purposes. For a keyboard
event, the event type equals the event value; thus, the event type for a character is the character,
and the event type for a function key symbol is the symbol itself. For events which are lists, the
event type is the symbol in the CAR of the list. Thus, the event type is always a symbol or a
character.

Two events of the same type are equivalent where key bindings are concerned; thus, they always
run the same command. That does not necessarily mean they do the same things, however, as
some commands look at the whole event to decide what to do. For example, some commands use
the location of a mouse event to decide what text to act on.

Sometimes broader classifications of events are useful. For example, you might want to ask
whether an event involved the META key, regardless of which other key or mouse button was used.

To get such information conveniently, call the functions event-modifiers and event-basic-
type.

event-modifiers event Function
This function returns a list of the modifiers that event has. The modifiers are symbols;
they include shift, control, meta, alt, hyper and super. In addition, the property
of a mouse event symbol always has one of click, drag, and down among the modifiers.
For example:

(event-modifiers ?a)
= nil

Chapter 18: Command Loop 307

(event-modifiers 7\C-a)

= (control)
(event-modifiers 7\C-%)

= (control)
(event-modifiers 7\C-\S-a)

= (control shift)
(event-modifiers ’f5)

= nil
(event-modifiers ’s-f5)

= (super)
(event-modifiers ’M-S-f5)

= (meta shift)
(event-modifiers ’mouse-1)

= (click)
(event-modifiers ’down-mouse-1)

= (down)

The modifiers list for a click event explicitly contains click, but the event symbol
name itself does not contain ‘click’.

event-basic-type event Function
This function returns the key or mouse button that event describes, with all modifiers
removed. For example:

(event-basic-type 7a)

= 97
(event-basic-type 7A)

= 97
(event-basic-type 7\C-a)

= 97
(event-basic-type 7\C-\S-a)

= 97
(event-basic-type ’f5)

= £5
(event-basic-type ’s-£f5)

= £5
(event-basic-type ’M-S-f5)

= fb

(event-basic-type ’down-mouse-1)
= mouse-1

mouse-movement-p object Function
This function returns non-nil if object is a mouse movement event.

308 GNU Emacs Lisp Reference Manual

18.5.10 Accessing Events
This section describes convenient functions for accessing the data in an event which is a list.

The following functions return the starting or ending position of a mouse-button event. The
position is a list of this form:

(window buffer-position (col . row) timestamp)

event-start event Function

This returns the starting position of event.

If event is a click or button-down event, this returns the location of the event. If event
is a drag event, this returns the drag’s starting position.

event-end event Function
This returns the ending position of event.

If event is a drag event, this returns the position where the user released the mouse
button. If event is a click or button-down event, the value is actually the starting
position, which is the only position such events have.

These four functions take a position-list as described above, and return various parts of it.

posn-window position Function

Return the window that position is in.

posn-point position Function
Return the buffer location in position.

posn-col-row position Function
Return the row and column in position, as a list (col . row).

posn-timestamp position Function
Return the timestamp of position.

Chapter 18: Command Loop 309

scroll-bar-scale ratio total Function
This function multiples (in effect) ratio by total, rounding the result to an integer.

ratio is not a number, but rather a pair (num . denom).

This is handy for scaling a position on a scroll bar into a buffer position. Here’s how
to do that:

(scroll-bar-scale (posn-col-row (event-start event))
(buffer-size))

18.5.11 Putting Keyboard Events in Strings

In most of the places where strings are used, we conceptualize the string as containing text
characters—the same kind of characters found in buffers or files. Occasionally Lisp programs use
strings which conceptually contain keyboard characters; for example, they may be key sequences
or keyboard macro definitions. There are special rules for how to put keyboard characters into a
string, because they are not limited to the range of 0 to 255 as text characters are.

A keyboard character typed using the META key is called a meta character. The numeric code
for such an event includes the 2*¥*23 bit; it does not even come close to fitting in a string. However,
earlier Emacs versions used a different representation for these characters, which gave them codes in
the range of 128 to 255. That did fit in a string, and many Lisp programs contain string constants
that use ‘\M-’ to express meta characters, especially as the argument to define-key and similar
functions.

We provide backward compatibility to run those programs with special rules for how to put a

keyboard character event in a string. Here are the rules:

e If the keyboard event value is in the range of 0 to 127, it can go in the string unchanged.

e The meta variants of those events, with codes in the range of 2**23 to 2*¥*23+127, can also go
in the string, but you must change their numeric values. You must set the 2**7 bit instead of
the 2**23 bit, resulting in a value between 128 and 255.

e Other keyboard character events cannot fit in a string. This includes keyboard events in the
range of 128 to 255.

Functions such as read-key-sequence that can construct strings containing events follow these

rules.

310 GNU Emacs Lisp Reference Manual

When you use the read syntax ‘\M-’ in a string, it produces a code in the range of 128 to 255—
the same code that you get if you modify the corresponding keyboard event to put it in the string.
Thus, meta events in strings work consistently regardless of how they get into the strings.

New programs can avoid dealing with these rules by using vectors instead of strings for key

sequences when there is any possibility that these issues might arise.

The reason we changed the representation of meta characters as keyboard events is to make
room for basic character codes beyond 127, and support meta variants of such larger character
codes.

18.6 Reading Input

The editor command loop reads keyboard input using the function read-key-sequence, which
uses read-event. These and other functions for keyboard input are also available for use in Lisp
programs. See also momentary-string-display in Section 35.7 [Temporary Displays|, page 653,
and sit-for in Section 18.7 [Waiting], page 316. See Section 34.7 [Terminal Input], page 638, for
functions and variables for controlling terminal input modes and debugging terminal input.

For higher-level input facilities, see Chapter 17 [Minibuffers|, page 263.

18.6.1 Key Sequence Input

The command loop reads input a key sequence at a time, by calling read-key-sequence. Lisp
programs can also call this function; for example, describe-key uses it to read the key to describe.

read-key-sequence prompt Function
This function reads a key sequence and returns it as a string or vector. It keeps reading
events until it has accumulated a full key sequence; that is, enough to specify a non-
prefix command using the currently active keymaps.

If the events are all characters and all can fit in a string, then read-key-sequence
returns a string (see Section 18.5.11 [Strings of Events], page 309). Otherwise, it
returns a vector, since a vector can hold all kinds of events—characters, symbols, and
lists. The elements of the string or vector are the events in the key sequence.

Chapter 18: Command Loop 311

Quitting is suppressed inside read-key-sequence. In other words, a C-g typed while
reading with this function is treated like any other character, and does not set quit-
flag. See Section 18.8 [Quitting], page 317.

The argument prompt is either a string to be displayed in the echo area as a prompt,
or nil, meaning not to display a prompt.

In the example below, the prompt ‘?’ is displayed in the echo area, and the user types
C-x C-f£.

(read-key-sequence "7")

7C-x C-f
—————————— Echo Area ———---—-———-
j n= X -~ F n
num-input-keys Variable

This variable’s value is the number of key sequences processed so far in this Emacs
session. This includes key sequences read from the terminal and key sequences read
from keyboard macros being executed.

If an input character is an upper case letter and has no key binding, but the lower case equivalent
has one, then read-key-sequence converts the character to lower case. Note that 1lookup-key does
not perform case conversion in this way.

The function read-key-sequence also transforms some mouse events. It converts unbound drag
events into click events, and discards unbound button-down events entirely. It also reshuffles focus
events so that they never appear in a key sequence with any other events.

When mouse events occur in special parts of a window, such as a mode line or a scroll bar,
the event itself shows nothing special—only the symbol that would normally represent that mouse
button and modifier keys. The information about the screen region is kept elsewhere in the event—
in the coordinates. But read-key-sequence translates this information into imaginary prefix keys,
all of which are symbols: mode-line, vertical-line, horizontal-scroll-bar and vertical-
scroll-bar.

312 GNU Emacs Lisp Reference Manual

For example, if you call read-key-sequence and then click the mouse on the window’s mode

line, this is what happens:

(read-key-sequence "Click on the mode line: ")
= [mode-line
(mouse-1
(#<window 6 on NEWS> mode-line
(40 . 63) 5959987))]

You can define meanings for mouse clicks in special window regions by defining key sequences

using these imaginary prefix keys.

18.6.2 Reading One Event

The lowest level functions for command input are those which read a single event.

read-event Function
This function reads and returns the next event of command input, waiting if necessary
until an event is available. Events can come directly from the user or from a keyboard

macro.

The function read-event does not display any message to indicate it is waiting for
input; use message first, if you wish to display one. If you have not displayed a
message, read-event does prompting: it displays descriptions of the events that led
to or were read by the current command. See Section 35.4 [The Echo Areal, page 649.

If cursor-in-echo-area is non-nil, then read-event moves the cursor temporarily
to the echo area, to the end of any message displayed there. Otherwise read-event

does not move the cursor.

Here is what happens if you call read-event and then press the right-arrow function key:

(read-event)
= right

read-char Function
This function reads and returns a character of command input. It discards any events

that are not characters until it gets a character.

Chapter 18: Command Loop 313

In the first example, the user types 1 (which is ASCII code 49). The second example
shows a keyboard macro definition that calls read-char from the minibuffer. read-
char reads the keyboard macro’s very next character, which is 1. The value of this
function is displayed in the echo area by the command eval-expression.

(read-char)

= 49
(symbol-function ’foo)

= "~ [~ [(read-char) "M1"
(execute-kbd-macro foo)

- 49

= nil

18.6.3 Quoted Character Input

You can use the function read-quoted-char when you want the user to specify a character,
and allow the user to specify a control or meta character conveniently with quoting or as an octal

character code. The command quoted-insert calls this function.

read-quoted-char &optional prompt Function
This function is like read-char, except that if the first character read is an octal digit
(0-7), it reads up to two more octal digits (but stopping if a non-octal digit is found)
and returns the character represented by those digits as an octal number.

Quitting is suppressed when the first character is read, so that the user can enter a
C-g. See Section 18.8 [Quitting], page 317.

If prompt is supplied, it specifies a string for prompting the user. The prompt string

is always printed in the echo area and followed by a single ‘-’.

In the following example, the user types in the octal number 177 (which is 127 in
decimal).

(read-quoted-char "What character")

314 GNU Emacs Lisp Reference Manual

—————————— Echo Area ————--—-———-
What character-177
—————————— Echo Area ————--—-———-

= 127

18.6.4 Peeking and Discarding

unread-command-events Variable
This variable holds a list of events waiting to be read as command input. The events

are used in the order they appear in the list.

The variable is used because in some cases a function reads a event and then decides
not to use it. Storing the event in this variable causes it to be processed normally by
the command loop or when the functions to read command input are called.

For example, the function that implements numeric prefix arguments reads any number
of digits. When it finds a non-digit event, it must unread the event so that it can be
read normally by the command loop. Likewise, incremental search uses this feature to

unread events it does not recognize.

unread-command-char Variable
This variable holds a character to be read as command input. A value of -1 means
“empty”.

This variable is pretty much obsolete now that you can use unread-command-events
instead; it exists only to support programs written for Emacs versions 18 and earlier.

listify-key-sequence key Function
This function converts the string or vector key to a list of events which you can put
in unread-command-events. Converting a vector is simple, but converting a string is
tricky because of the special representation used for meta characters in a string (see
Section 18.5.11 [Strings of Events], page 309).

Chapter 18: Command Loop 315

input-pending-p Function
This function determines whether any command input is currently available to be read.
It returns immediately, with value t if there is input, nil otherwise. On rare occasions

it may return t when no input is available.

last-input-event Variable
last-input-char Variable
This variable records the last terminal input event read, whether as part of a command

or explicitly by a Lisp program.

In the example below, a character is read (the character 1, ASCII code 49). It becomes
the value of last-input-char, while C-e (from the C-x C-e command used to evaluate

this expression) remains the value of last-command-char.

(progn (print (read-char))
(print last-command-char)
last-input-char)

- 49
45
= 49

The alias last-input-char exists for compatibility with Emacs version 18.

discard-input Function
This function discards the contents of the terminal input buffer and cancels any key-

board macro that might be in the process of definition. It returns nil.

In the following example, the user may type a number of characters right after starting
the evaluation of the form. After the sleep-for finishes sleeping, any characters that

have been typed are discarded.

(progn (sleep-for 2)
(discard-input))
= nil

316 GNU Emacs Lisp Reference Manual

18.7 Waiting for Elapsed Time or Input

The waiting commands are designed to make Emacs wait for a certain amount of time to pass or
until there is input. For example, you may wish to pause in the middle of a computation to allow
the user time to view the display. sit-for pauses and updates the screen, and returns immediately

if input comes in, while sleep-for pauses without updating the screen.

sit-for seconds &optional millisec nodisp Function
This function performs redisplay (provided there is no pending input from the user),
then waits seconds seconds, or until input is available. The result is t if sit-for waited
the full time with no input arriving (see input-pending-p in Section 18.6.4 [Peeking
and Discarding], page 314). Otherwise, the value is nil.

The optional argument millisec specifies an additional waiting period measured in
milliseconds. This adds to the period specified by seconds. Not all operating systems
support waiting periods other than multiples of a second; on those that do not, you
get an error if you specify nonzero millisec.

Redisplay is always preempted if input arrives, and does not happen at all if input is
available before it starts. Thus, there is no way to force screen updating if there is
pending input; however, if there is no input pending, you can force an update with no
delay by using (sit-for 0).

If nodisp is non-nil, then sit-for does not redisplay, but it still returns as soon as
input is available (or when the timeout elapses).

The usual purpose of sit-for is to give the user time to read text that you display.

sleep-for seconds &optional millisec Function
This function simply pauses for seconds seconds without updating the display. It pays
no attention to available input. It returns nil.

The optional argument millisec specifies an additional waiting period measured in
milliseconds. This adds to the period specified by seconds. Not all operating systems
support waiting periods other than multiples of a second; on those that do not, you

get an error if you specify nonzero millisec.

Use sleep-for when you wish to guarantee a delay.

Chapter 18: Command Loop 317

See Section 34.5 [Time of Day], page 635, for functions to get the current time.

18.8 Quitting

Typing C-g while the command loop has run a Lisp function causes Emacs to quit whatever it
is doing. This means that control returns to the innermost active command loop.

Typing C-g while the command loop is waiting for keyboard input does not cause a quit; it acts
as an ordinary input character. In the simplest case, you cannot tell the difference, because C-g
normally runs the command keyboard-quit, whose effect is to quit. However, when C-g follows a
prefix key, the result is an undefined key. The effect is to cancel the prefix key as well as any prefix
argument.

In the minibuffer, C-g has a different definition: it aborts out of the minibuffer. This means, in
effect, that it exits the minibuffer and then quits. (Simply quitting would return to the command
loop within the minibuffer.) The reason why C-g does not quit directly when the command reader
is reading input is so that its meaning can be redefined in the minibuffer in this way. C-g following
a prefix key is not redefined in the minibuffer, and it has its normal effect of canceling the prefix
key and prefix argument. This too would not be possible if C-g quit directly.

C-g causes a quit by setting the variable quit-flag to a non-nil value. Emacs checks this
variable at appropriate times and quits if it is not nil. Setting quit-flag non-nil in any way
thus causes a quit.

At the level of C code, quits cannot happen just anywhere; only at the special places which
check quit-flag. The reason for this is that quitting at other places might leave an inconsistency
in Emacs’s internal state. Because quitting is delayed until a safe place, quitting cannot make
Emacs crash.

Certain functions such as read-key-sequence or read-quoted-char prevent quitting entirely
even though they wait for input. Instead of quitting, C-g serves as the requested input. In the
case of read-key-sequence, this serves to bring about the special behavior of C-g in the command
loop. In the case of read-quoted-char, this is so that C-q can be used to quote a C-g.

You can prevent quitting for a portion of a Lisp function by binding the variable inhibit-quit
to a non-nil value. Then, although C-g still sets quit-flag to t as usual, the usual result of
this—a quit—is prevented. Eventually, inhibit-quit will become nil again, such as when its
binding is unwound at the end of a let form. At that time, if quit-flag is still non-nil, the

318 GNU Emacs Lisp Reference Manual

requested quit happens immediately. This behavior is ideal for a “critical section”, where you wish
to make sure that quitting does not happen within that part of the program.

In some functions (such as read-quoted-char), C-g is handled in a special way which does not
involve quitting. This is done by reading the input with inhibit-quit bound to t and setting
quit-flag to nil before inhibit-quit becomes nil again. This excerpt from the definition of
read-quoted-char shows how this is done; it also shows that normal quitting is permitted after

the first character of input.

(defun read-quoted-char (&optional prompt)
"...documentation. . ."
(let ((count 0) (code 0) char)
(while (< count 3)
(let ((inhibit-quit (zerop count))
(help-form nil))
(and prompt (message "Y%s-" prompt))
(setq char (read-char))
(if inhibit-quit (setq quit-flag nil)))
o)
(logand 255 code)))

quit-flag Variable
If this variable is non-nil, then Emacs quits immediately, unless inhibit-quit is
non-nil. Typing C-g sets quit-flag non-nil, regardless of inhibit-quit.

inhibit-quit Variable
This variable determines whether Emacs should quit when quit-flag is set to a value
other than nil. If inhibit-quit is non-nil, then quit-flag has no special effect.

keyboard-quit Command
This function signals the quit condition with (signal >quit nil). This is the same
thing that quitting does. (See signal in Section 9.5.3 [Errors|, page 141.)

You can specify a character other than C-g to use for quitting. See the function set-input-mode

in Section 34.7 [Terminal Input], page 638.

Chapter 18: Command Loop 319

18.9 Prefix Command Arguments

Most Emacs commands can use a prefix argument, a number specified before the command
itself. (Don’t confuse prefix arguments with prefix keys.) The prefix argument is represented by a
value that is always available (though it may be nil, meaning there is no prefix argument). Each
command may use the prefix argument or ignore it.

There are two representations of the prefix argument: raw and numeric. The editor command
loop uses the raw representation internally, and so do the Lisp variables that store the information,
but commands can request either representation.

Here are the possible values of a raw prefix argument:

e nil, meaning there is no prefix argument. Its numeric value is 1, but numerous commands
make a distinction between nil and the integer 1.

e An integer, which stands for itself.

e A list of one element, which is an integer. This form of prefix argument results from one or
a succession of C-u’s with no digits. The numeric value is the integer in the list, but some
commands make a distinction between such a list and an integer alone.

e The symbol -. This indicates that M-- or C-u - was typed, without following digits. The
equivalent numeric value is —1, but some commands make a distinction between the integer
—1 and the symbol -.

The various possibilities may be illustrated by calling the following function with various prefixes:

(defun display-prefix (arg)
"Display the value of the raw prefix arg."
(interactive "P")
(message "%s" arg))

Here are the results of calling print-prefix with various raw prefix arguments:
M-x print-prefix - nil
C-u M-x print-prefix - (4)
C-u C-u M-x print-prefix - (16)

C-u 3 M-x print-prefix -+ 3

320 GNU Emacs Lisp Reference Manual

M-3 M-x print-prefix H 3 ; (Same as C-u 3.)
C-u - M-x print-prefix H -
M- - M-x print-prefix H - ; (Same as C-u -.)

C-u -7 M-x print-prefix -+ -7

M- -7 M-x print-prefix - -7 ; (Same as C-u -7.)

Emacs uses two variables to store the prefix argument: prefix-arg and current-prefix-arg.
Commands such as universal-argument that set up prefix arguments for other commands store
them in prefix-arg. In contrast, current-prefix-arg conveys the prefix argument to the current
command, so setting it has no effect on the prefix arguments for future commands.

Normally, commands specify which representation to use for the prefix argument, either numeric
or raw, in the interactive declaration. (See Section 18.3 [Interactive Call], page 294.) Alterna-
tively, functions may look at the value of the prefix argument directly in the variable current-
prefix-arg, but this is less clean.

Do not call the functions universal-argument, digit-argument, or negative-argument unless
you intend to let the user enter the prefix argument for the next command.

universal-argument Command
This command reads input and specifies a prefix argument for the following command.
Don’t call this command yourself unless you know what you are doing.

digit-argument arg Command
This command adds to the prefix argument for the following command. The argument
arg is the raw prefix argument as it was before this command; it is used to compute
the updated prefix argument. Don’t call this command yourself unless you know what
you are doing.

negative-argument arg Command
This command adds to the numeric argument for the next command. The argument
arg is the raw prefix argument as it was before this command; its value is negated to
form the new prefix argument. Don’t call this command yourself unless you know what
you are doing.

Chapter 18: Command Loop 321

prefix-numeric-value arg Function
This function returns the numeric meaning of a valid raw prefix argument value, arg.
The argument may be a symbol, a number, or a list. If it is nil, the value 1 is returned;
if it is any other symbol, the value —1 is returned. If it is a number, that number is
returned; if it is a list, the CAR of that list (which should be a number) is returned.

current-prefix-arg Variable
This variable is the value of the raw prefix argument for the current command. Com-
mands may examine it directly, but the usual way to access it is with (interactive
IIP n) .

prefix-arg Variable
The value of this variable is the raw prefix argument for the next editing command.
Commands that specify prefix arguments for the following command work by setting
this variable.

18.10 Recursive Editing

The Emacs command loop is entered automatically when Emacs starts up. This top-level
invocation of the command loop is never exited until the Emacs is killed. Lisp programs can also
invoke the command loop. Since this makes more than one activation of the command loop, we
call it recursive editing. A recursive editing level has the effect of suspending whatever command
invoked it and permitting the user to do arbitrary editing before resuming that command.

The commands available during recursive editing are the same ones available in the top-level
editing loop and defined in the keymaps. Only a few special commands exit the recursive editing
level; the others return to the recursive editing level when finished. (The special commands for
exiting are always available, but do nothing when recursive editing is not in progress.)

All command loops, including recursive ones, set up all-purpose error handlers so that an error
in a command run from the command loop will not exit the loop.

Minibuffer input is a special kind of recursive editing. It has a few special wrinkles, such as
enabling display of the minibuffer and the minibuffer window, but fewer than you might suppose.
Certain keys behave differently in the minibuffer, but that is only because of the minibuffer’s local
map; if you switch windows, you get the usual Emacs commands.

322 GNU Emacs Lisp Reference Manual

To invoke a recursive editing level, call the function recursive-edit. This function contains
the command loop; it also contains a call to catch with tag exit, which makes it possible to exit
the recursive editing level by throwing to exit (see Section 9.5.1 [Catch and Throw], page 138).
If you throw a value other than t, then recursive-edit returns normally to the function that
called it. The command C-M-c (exit-recursive-edit) does this. Throwing a t value causes
recursive-edit to quit, so that control returns to the command loop one level up. This is called
aborting, and is done by C-] (abort-recursive-edit).

Most applications should not use recursive editing, except as part of using the minibuffer.
Usually it is more convenient for the user if you change the major mode of the current buffer
temporarily to a special major mode, which has a command to go back to the previous mode.
(This technique is used by the w command in Rmail.) Or, if you wish to give the user different
text to edit “recursively”, create and select a new buffer in a special mode. In this mode, define
a command to complete the processing and go back to the previous buffer. (The m command in
Rmail does this.)

Recursive edits are useful in debugging. You can insert a call to debug into a function definition
as a sort of breakpoint, so that you can look around when the function gets there. debug invokes
a recursive edit but also provides the other features of the debugger.

Recursive editing levels are also used when you type C-r in query-replace or use C-x q (kbd-
macro-query).

recursive-edit Function
This function invokes the editor command loop. It is called automatically by the
initialization of Emacs, to let the user begin editing. When called from a Lisp program,
it enters a recursive editing level.

In the following example, the function simple-rec first advances point one word, then
enters a recursive edit, printing out a message in the echo area. The user can then do

any editing desired, and then type C-M-c to exit and continue executing simple-rec.

(defun simple-rec ()
(forward-word 1)
(message "Recursive edit in progress.")
(recursive-edit)
(forward-word 1))
= simple-rec
(simple-rec)
= nil

Chapter 18: Command Loop 323

exit-recursive-edit Command
This function exits from the innermost recursive edit (including minibuffer input). Its
definition is effectively (throw ’exit nil).

abort-recursive-edit Command
This function aborts the command that requested the innermost recursive edit (includ-
ing minibuffer input), by signaling quit after exiting the recursive edit. Its definition
is effectively (throw ’exit t). See Section 18.8 [Quitting], page 317.

top-level Command
This function exits all recursive editing levels; it does not return a value, as it jumps
completely out of any computation directly back to the main command loop.

recursion-depth Function
This function returns the current depth of recursive edits. When no recursive edit is

active, it returns 0.

18.11 Disabling Commands

Disabling a command marks the command as requiring user confirmation before it can be
executed. Disabling is used for commands which might be confusing to beginning users, to prevent
them from using the commands by accident.

The low-level mechanism for disabling a command is to put a non-nil disabled property on
the Lisp symbol for the command. These properties are normally set up by the user’s ‘.emacs’ file

with Lisp expressions such as this:
(put ’upcase-region ’disabled t)

For a few commands, these properties are present by default and may be removed by the ‘.emacs’
file.

If the value of the disabled property is a string, that string is included in the message printed

when the command is used:

(put ’delete-region ’disabled
"Text deleted this way cannot be yanked back!\n")

324 GNU Emacs Lisp Reference Manual

See section “Disabling” in The GNU Emacs Manual, for the details on what happens when a
disabled command is invoked interactively. Disabling a command has no effect on calling it as a

function from Lisp programs.

enable-command command Command
Allow command to be executed without special confirmation from now on. The user’s

‘.emacs’ file is optionally altered so that this will apply to future sessions.

disable-command command Command
Require special confirmation to execute command from now on. The user’s ‘.emacs’
file is optionally altered so that this will apply to future sessions.

disabled-command-hook Variable

This variable is a normal hook that is run instead of a disabled command, when the
user runs the disabled command interactively. The hook functions can use this-
command-keys to determine what the user typed to run the command, and thus find

the command itself.

By default, disabled-command-hook contains a function that asks the user whether to

proceed.

18.12 Command History

The command loop keeps a history of the complex commands that have been executed, to make
it convenient to repeat these commands. A complex command is one for which the interactive
argument reading uses the minibuffer. This includes any M-x command, any M-ESC command, and
any command whose interactive specification reads an argument from the minibuffer. Explicit
use of the minibuffer during the execution of the command itself does not cause the command to

be considered complex.

command-history Variable
This variable’s value is a list of recent complex commands, each represented as a form
to evaluate. It continues to accumulate all complex commands for the duration of the
editing session, but all but the first (most recent) thirty elements are deleted when a
garbage collection takes place (see Section B.3 [Garbage Collection], page 696).

command-history

Chapter 18: Command Loop 325

= ((switch-to-buffer "chistory.texi")
(describe-key "“X~[")
(visit-tags-table "~ /emacs/src/")
(find-tag "repeat-complex-command"))

This history list is actually a special case of minibuffer history (see Section 17.4 [Minibuffer
History], page 268), with one special twist: the elements are expressions rather than strings.

There are a number of commands devoted to the editing and recall of previous commands.
The commands repeat-complex-command, and 1list-command-history are described in the user
manual (see section “Repetition” in The GNU Emacs Manual). Within the minibuffer, the history

commands used are the same ones available in any minibuffer.

18.13 Keyboard Macros

A keyboard macro is a canned sequence of input events that can be considered a command and
made the definition of a key. Don’t confuse keyboard macros with Lisp macros (see Chapter 12
[Macros], page 193).

execute-kbd-macro macro &optional count Function
This function executes macro as a sequence of events. If macro is a string or vector,
then the events in it are executed exactly as if they had been input by the user. The
sequence is not expected to be a single key sequence; normally a keyboard macro

definition consists of several key sequences concatenated.

If macro is a symbol, then its function definition is used in place of macro. If that
is another symbol, this process repeats. Eventually the result should be a string or
vector. If the result is not a symbol, string, or vector, an error is signaled.

The argument count is a repeat count; macro is executed that many times. If count
is omitted or nil, macro is executed once. If it is 0, macro is executed over and over
until it encounters an error or a failing search.

last-kbd-macro Variable
This variable is the definition of the most recently defined keyboard macro. Its value

is a string or vector, or nil.

326 GNU Emacs Lisp Reference Manual

executing-macro Variable
This variable contains the string or vector that defines the keyboard macro that is
currently executing. It is nil if no macro is currently executing.

defining-kbd-macro Variable
This variable indicates whether a keyboard macro is being defined. It is set to t by
start-kbd-macro, and nil by end-kbd-macro. You can use this variable to make a
command behave differently when run from a keyboard macro (perhaps indirectly by
calling interactive-p). However, do not set this variable yourself.

The commands are described in the user’s manual (see section “Keyboard Macros” in The GNU
Emacs Manual).

Chapter 19: Keymaps 327

19 Keymaps

The bindings between input events and commands are recorded in data structures called
keymaps. Each binding in a keymap associates (or binds) an individual event type either with
another keymap or with a command. When an event is bound to a keymap, that keymap is used
to look up the next character typed; this continues until a command is found. The whole process
is called key lookup.

19.1 Keymap Terminology

A keymap is a table mapping event types to definitions (which can be any Lisp objects, though
only certain types are meaningful for execution by the command loop). Given an event (or an
event type) and a keymap, Emacs can get the event’s definition. Events include ordinary ASCII

characters, function keys, and mouse actions (see Section 18.5 [Input Events|, page 299).

A sequence of input events that form a unit is called a key sequence, or key for short. A sequence

of one event is always a key sequence, and so are some multi-event sequences.

A keymap determines a binding or definition for any key sequence. If the key sequence is a
single event, its binding is the definition of the event in the keymap. The binding of a key sequence
of more than one event is found by an iterative process: the binding of the first event is found, and
must be a keymap; then the second event’s binding is found in that keymap, and so on until all

the events in the key sequence are used up.

If the binding of a key sequence is a keymap, we call the key sequence a prefix key. Otherwise,
we call it a complete key (because no more characters can be added to it). If the binding is nil,
we call the key undefined. Examples of prefix keys are C-c, C-x, and C-x 4. Examples of defined
complete keys are X, RET, and C-x 4 C-f. Examples of undefined complete keys are C-x C-g, and
C-c 3. See Section 19.5 [Prefix Keys|, page 331, for more details.

The rule for finding the binding of a key sequence assumes that the intermediate bindings (found
for the events before the last) are all keymaps; if this is not so, the sequence of events does not
form a unit—it is not really a key sequence. In other words, removing one or more events from the
end of any valid key must always yield a prefix key. For example, C-f C-f is not a key; C-f is not
a prefix key, so a longer sequence starting with C-f cannot be a key.

328 GNU Emacs Lisp Reference Manual

Note that the set of possible multi-event key sequences depends on the bindings for prefix keys;
therefore, it can be different for different keymaps, and can change when bindings are changed.
However, a one-event sequence is always a key sequence, because it does not depend on any prefix
keys for its well-formedness.

At any time, several primary keymaps are active—that is, in use for finding key bindings. These
are the global map, which is shared by all buffers; the local keymap, which is usually associated
with a specific major mode; and zero or more minor mode keymaps which belong to currently
enabled minor modes. (Not all minor modes have keymaps.) The local keymap bindings shadow
(i.e., take precedence over) the corresponding global bindings. The minor mode keymaps shadow
both local and global keymaps. See Section 19.7 [Active Keymaps|, page 337, for details.

19.2 Format of Keymaps

A keymap is a list whose CAR is the symbol keymap. The remaining elements of the list define
the key bindings of the keymap. Use the function keymapp (see below) to test whether an object
is a keymap.

An ordinary element is a cons cell of the form (type . binding). This specifies one binding
which applies to events of type type. Each ordinary binding applies to events of a particular event
type, which is always a character or a symbol. See Section 18.5.9 [Classifying Events|, page 306.

A cons cell whose CAR is t is a default key binding; any event not bound by other elements of the
keymap is given binding as its binding. Default bindings allow a keymap to bind all possible event
types without having to enumerate all of them. A keymap that has a default binding completely

masks any lower-precedence keymap.

If an element of a keymap is a vector, the vector counts as bindings for all the ASCII characters;
vector element n is the binding for the character with code n. This is a more compact way to record
lots of bindings. A keymap with such a vector is called a full keymap. Other keymaps are called
sparse keymaps.

When a keymap contains a vector, it always defines a binding for every ASCII character even
if the vector element is nil. Such a binding of nil overrides any default binding in the keymap.
However, default bindings are still meaningful for events that are not ASCII characters. A binding
of nil does not override lower-precedence keymaps; thus, if the local map gives a binding of nil,

Emacs uses the binding from the global map.

Chapter 19: Keymaps 329

Aside from bindings, a keymap can also have a string as an element. This is called the over-
all prompt string and makes it possible to use the keymap as a menu. See Section 19.6 [Menu
Keymaps], page 333.

Keymaps do not directly record bindings for the meta characters, whose codes are from 128
to 255. Instead, meta characters are regarded for purposes of key lookup as sequences of two
characters, the first of which is ESC (or whatever is currently the value of meta-prefix-char).
Thus, the key M-a is really represented as ESC a, and its global binding is found at the slot for a in
esc-map.

Here as an example is the local keymap for Lisp mode, a sparse keymap. It defines bindings for
DEL and TAB, plus C-c C-1, M-C-q, and M-C-x.

lisp-mode-map
=
(keymap
;; TAB
(9 . lisp-indent-line)
;3 DEL
(127 . backward-delete-char-untabify)
(3 keymap
;; C-c C-1
(12 . run-lisp))
(27 keymap
;35 M-C-q, treated as ESC C-q
(17 . indent-sexp)
;3 M-C-x, treated as ESC C-x
(24 . lisp-send-defun)))

keymapp object Function
This function returns t if object is a keymap, nil otherwise. Practically speaking, this
function tests for a list whose CAR is keymap.

(keymapp ’ (keymap))
=t

(keymapp (current-global-map))
=t

330 GNU Emacs Lisp Reference Manual

19.3 Creating Keymaps

Here we describe the functions for creating keymaps.

make-keymap &optional prompt Function
This function creates and returns a new full keymap (i.e., one which contains a vector
of length 128 for defining all the ASCII characters). The new keymap initially binds
all ASCII characters to nil, and does not bind any other kind of event.

(make-keymap)
= (keymap [nil nil nil ... nil nil])

If you specify prompt, that becomes the overall prompt string for the keymap. The
prompt string is useful for menu keymaps (see Section 19.6 [Menu Keymaps|, page 333).

make-sparse-keymap &optional prompt Function
This function creates and returns a new sparse keymap with no entries. The new
keymap does not bind any events. The argument prompt specifies a prompt string, as

in make-keymap.

(make-sparse-keymap)
= (keymap)

copy-keymap keymap Function
This function returns a copy of keymap. Any keymaps which appear directly as bindings
in keymap are also copied recursively, and so on to any number of levels. However,
recursive copying does not take place when the definition of a character is a symbol

whose function definition is a keymap; the same symbol appears in the new copy.

(setq map (copy-keymap (current-local-map)))
= (keymap
;5 (This implements meta characters.)
(27 keymap
(83 . center-paragraph)
(115 . center-line))
(9 . tab-to-tab-stop))

(eq map (current-local-map))
= nil

Chapter 19: Keymaps 331

(equal map (current-local-map))
=t

19.4 Inheritance and Keymaps

A keymap can inherit the bindings of another keymap. Do do this, make a keymap whose “tail”
is another existing keymap to inherit from. Such a keymap looks like this:

(keymap bindings... . other-keymap)

The effect is that this keymap inherits all the bindings of other-keymap, whatever they may be at
the time a key is looked up, but can add to them or override them with bindings.

If you change the bindings in other-keymap using define-key or other key-binding functions,
these changes are visible in the inheriting keymap unless shadowed by bindings. The converse is
not true: if you use define-key to change the inheriting keymap, that affects bindings, but has no
effect on other-keymap.

Here is an example showing how to make a keymap that inherits from text-mode-map:

(setq my-mode-map (cons ’keymap text-mode-map))

19.5 Prefix Keys

A prefix key has an associated keymap which defines what to do with key sequences that start
with the prefix key. For example, C-x is a prefix key, and it uses a keymap which is also stored in
the variable ctl-x-map. Here is a list of the standard prefix keys of Emacs and their keymaps:

e esc-map is used for events that follow ESC. Thus, the global definitions of all meta characters
are actually found here. This map is also the function definition of ESC-prefix.
e help-map is used for events that follow C-h.

e mode-specific-map is for events that follow C-c. This map is not actually mode specific;
its name was chosen to be informative for the user in C-h b (display-bindings), where it

describes the main use of the C-c prefix key.

e ctl-x-map is the variable name for the map used for events that follow C-x. This map is also

the function definition of Control-X-prefix.

332 GNU Emacs Lisp Reference Manual

e ctl-x—4-map is used for events that follow C-x 4.
e ctl-x-5-map used is for events that follow C-x 5.

e A nameless keymap is used for events that follow C-x n. Others are used for events following

C-x r and C-x a.

The binding of a prefix key is the keymap to use for looking up the events that follow the prefix
key. (It may instead be a symbol whose function definition is a keymap. The effect is the same, but
the symbol serves as a name for the prefix key.) Thus, the binding of C-x is the symbol Control-
X-prefix, whose function definition is the keymap for C-x commands. (The same keymap is also
the value of ctl-x-map.)

Prefix key definitions of this sort can appear in any active keymap. The definitions of C-c, C-x,
C-h and ESC as prefix keys appear in the global map, so these prefix keys are always available.
Major and minor modes can redefine a key as a prefix by putting a prefix key definition for it in
the local map or the minor mode’s map. See Section 19.7 [Active Keymaps], page 337.

If a key is defined as a prefix in more than one active map, then the various definitions are in
effect merged: the commands defined in the minor mode keymaps come first, followed by those in
the local map’s prefix definition, and then by those from the global map.

In the following example, we make C-p a prefix key in the local keymap, in such a way that C-p
is identical to C-x. Then the binding for C-p C-£ is the function find-file, just like C-x C-£f. The

key sequence C-p 6 is not found in any active keymap.

(use-local-map (make-sparse-keymap))
= nil
(local-set-key "\C-p" ctl-x-map)
= nil
(key-binding "\C-p\C-f")
= find-file
(key-binding "\C-p6")
= nil

define-prefix-command symbol Function
This function defines symbol as a prefix command: it creates a full keymap and stores
it as symbol’s function definition. Storing the symbol as the binding of a key makes
the key a prefix key which has a name. It also sets symbol as a variable, to have the
keymap as its value. The function returns symbol.

Chapter 19: Keymaps 333

In Emacs version 18, only the function definition of symbol was set, not the value as a

variable.

19.6 Menu Keymaps

A keymap can define a menu as well as ordinary keys and mouse button meanings. Menus are
normally actuated with the mouse, but they can work with the keyboard also.

19.6.1 Defining Menus

A keymap is suitable for menu use if it has an overall prompt string, which is a string that appears
as an element of the keymap. (See Section 19.2 [Format of Keymaps], page 328.) The string should
describe the purpose of the menu. The easiest way to construct a keymap with a prompt string
is to specify the string as an argument when you call make-keymap or make-sparse-keymap (see
Section 19.3 [Creating Keymaps]|, page 330).

The individual bindings in the menu keymap should also have prompt strings; these strings
become the items displayed in the menu. A binding with a prompt string looks like this:

(string . real-binding)

As far as define-key and lookup-key are concerned, the string is part of the event’s binding.
However, only real-binding is used for executing the key.

You can also supply a second string, called the help string, as follows:
(string help-string . real-binding)

Currently Emacs does not actually use help-string; it knows only how to ignore help-string
in order to extract real-binding. In the future we hope to make help-string serve as extended

documentation for the menu item, available on request.

The prompt string for a binding should be short—one or two words. It should describe the
action of the command it corresponds to.

If real-binding is nil, then string appears in the menu but cannot be selected.

334 GNU Emacs Lisp Reference Manual

If real-binding is a symbol, and has a non-nil menu-enable property, that property is an
expression which controls whether the menu item is enabled. Every time the keymap is used
to display a menu, Emacs evaluates the expression, and it enables the menu item only if the
expression’s value is non-nil. When a menu item is disabled, it is displayed in a “fuzzy” fashion,

and cannot be selected with the mouse.

The order of items in the menu is the same as the order of bindings in the keymap. Since
define-key puts new bindings at the front, you should define the menu items starting at the

bottom of the menu and moving to the top, if you care about the order.

19.6.2 Menus and the Mouse

The way to make a menu keymap produce a menu is to make it the definition of a prefix key.

When the prefix key ends with a mouse event, Emacs handles the menu keymap by popping
up a visible menu, so that the user can select a choice with the mouse. When the user clicks on
a menu item, the event generated is whatever character or symbol has the binding which brought
about that menu item.

It’s often best to use a button-down event to trigger the menu. Then the user can select a menu

item by releasing the button.

A single keymap can appear as multiple menu panes, if you explicitly arrange for this. The
way to do this is to make a keymap for each pane, then create a binding for each of those maps
in the main keymap of the menu. Give each of these bindings a prompt string that starts with
‘@’. The rest of the prompt string becomes the name of the pane. See the file ‘1lisp/mouse.el’ for
an example of this. Any ordinary bindings with ‘@-less prompt strings are grouped into one pane,
which appears along with the other panes explicitly created for the submaps.

You can also get multiple panes from separate keymaps. The full definition of a prefix key
always comes from merging the definitions supplied by the various active keymaps (minor mode,
local, and global). When more than one of these keymaps is a menu, each of them makes a separate
pane or panes. See Section 19.7 [Active Keymaps], page 337.

A Lisp program can explicitly pop up a menu and receive the user’s choice. You can use keymaps
for this also. See Section 26.13 [Pop-Up Menus], page 483.

Chapter 19: Keymaps 335

19.6.3 Menus and the Keyboard

When a prefix key ending with a keyboard event (a character or function key) has a definition
that is a menu keymap, the user can use the keyboard to choose a menu item.

Emacs displays the menu alternatives (the prompt strings of the bindings) in the echo area. If
they don’t all fit at once, the user can type SPC to see the next line of alternatives. Successive uses
of SPC eventually get to the end of the menu and then cycle around to the beginning.

When the user has found the desired alternative from the menu, he or she should type the
corresponding character—the one whose binding is that alternative.

In a menu intended for keyboard use, each menu item must clearly indicate what character to
type. The best convention to use is to make the character the first letter of the menu item prompt
string. That is something users will understand without being told.

This way of using menus in an Emacs-like editor was inspired by the Hierarkey system.

menu-prompt-more-char Variable
This variable specifies the character to use to ask to see the next line of a menu. Its
initial value is 32, the code for SPC.

19.6.4 Menu Example

Here is a simple example of how to set up a menu for mouse use.

(defvar my-menu-map
(make-sparse-keymap "Key Commands <==> Functions"))
(fset ’help-for-keys my-menu-map)

(define-key my-menu-map [bindings]

>("List all keystroke commands" . describe-bindings))
(define-key my-menu-map [key]

>("Describe key briefly" . describe-key-briefly))
(define-key my-menu-map [key-verbose]

> ("Describe key verbose" . describe-key))
(define-key my-menu-map [function]
>("Describe Lisp function" . describe-function))

(define-key my-menu-map [where-is]
>("Where is this command" . where-is))

336 GNU Emacs Lisp Reference Manual

(define-key global-map [C-S-down-mouse-1] ’help-for-keys)

The symbols used in the key sequences bound in the menu are fictitious “function keys”; they
don’t appear on the keyboard, but that doesn’t stop you from using them in the menu. Their
names were chosen to be mnemonic, because they show up in the output of where-is and apropos

to identify the corresponding menu items.

However, if you want the menu to be usable from the keyboard as well, you must use real ASCII
characters instead of fictitious function keys.

19.6.5 The Menu Bar

Under X Windows, each frame can have a menu bar—a permanently displayed menu stretching
horizontally across the top of the frame. The items of the menu bar are the subcommands of the
fake “function key” menu-bar, as defined by all the active keymaps.

To add an item to the menu bar, invent a fake “function key” of your own (let’s call it key), and
make a binding for the key sequence [menu-bar key]. Most often, the binding is a menu keymap,
so that pressing a button on the menu bar item leads to another menu.

When more than one active keymap defines the same fake function key for the menu bar, the item
appears just once. If the user clicks on that menu bar item, it brings up a single, combined submenu
containing all the subcommands of that item—the global subcommands, the local subcommands,
and the minor mode subcommands, all together.

In order for a frame to display a menu bar, its menu-bar-1lines property must be greater than
zero. Emacs uses just one line for the menu bar itself; if you specify more than one line, the other
lines serve to separate the menu bar from the windows in the frame. We recommend you try one

or two as the value of menu-bar-1lines. See Section 26.2.3 [X Frame Parameters|, page 475.

Here’s an example of setting up a menu bar item:

(modify-frame-parameters (selected-frame) ’((menu-bar-lines . 2)))

;3 Make a menu keymap (with a prompt string)
;3 to be the menu bar item’s definition.
(define-key global-map [menu-bar words]
(cons "Words" (make-sparse-keymap "Words")))

Chapter 19: Keymaps 337

;5 Make specific subcommands in the item’s submenu.
(define-key global-map

[menu-bar words forward]

> ("Forward word" . forward-word))
(define-key global-map

[menu-bar words backward]
> ("Backward word" . backward-word))

19.7 Active Keymaps

Emacs normally contains many keymaps; at any given time, just a few of them are active in
that they participate in the interpretation of user input. These are the global keymap, the current
buffer’s local keymap, and the keymaps of any enabled minor modes.

The global keymap holds the bindings of keys that are defined regardless of the current buffer,
such as C-f. The variable global-map holds this keymap, which is always active.

Each buffer may have another keymap, its local keymap, which may contain new or overriding
definitions for keys. At all times, the current buffer’s local keymap is active. Text properties
can specify an alternative local map for certain parts of the buffer; see Section 29.17.4 [Special

Properties|, page 555.

Each minor mode may have a keymap; if it does, the keymap is active whenever the minor mode

is enabled.

All the active keymaps are used together to determine what command to execute when a key is
entered. The key lookup proceeds as described earlier (see Section 19.8 [Key Lookup], page 340),
but Emacs first searches for the key in the minor mode maps (one map at a time); if they do not
supply a binding for the key, Emacs searches the local map; if that too has no binding, Emacs then

searches the global map.

Since every buffer that uses the same major mode normally uses the very same local keymap, it
may appear as if the keymap is local to the mode. A change to the local keymap of a buffer (using
local-set-key, for example) will be seen also in the other buffers that share that keymap.

The local keymaps that are used for Lisp mode, C mode, and several other major modes exist
even if they have not yet been used. These local maps are the values of the variables lisp-mode-

338 GNU Emacs Lisp Reference Manual

map, c-mode-map, and so on. For most other modes, which are less frequently used, the local

keymap is constructed only when the mode is used for the first time in a session.

The minibuffer has local keymaps, too; they contain various completion and exit commands.
See Chapter 17 [Minibuffers], page 263.

See Appendix E [Standard Keymaps], page 713, for a list of standard keymaps.

global-map Variable
This variable contains the default global keymap that maps Emacs keyboard input to
commands. Normally this keymap is the global keymap. The default global keymap is
a full keymap that binds self-insert-command to all of the printing characters.

current-global-map Function
This function returns the current global keymap. This is always the same as the value
of global-map unless you change one or the other.

(current-global-map)
= (keymap [set-mark-command beginning-of-line ...
delete-backward-char])

current-local-map Function
This function returns the current buffer’s local keymap, or nil if it has none. In
the following example, the keymap for the ‘*scratch*’ buffer (using Lisp Interaction
mode) is a sparse keymap in which the entry for ESC, ASCII code 27, is another sparse
keymap.

(current-local-map)
= (keymap
(10 . eval-print-last-sexp)
(9 . lisp-indent-line)
(127 . backward-delete-char-untabify)
(27 keymap
(24 . eval-defun)
(17 . indent-sexp)))

current-minor-mode-maps Function
This function returns a list of the keymaps of currently enabled minor modes.

Chapter 19: Keymaps 339

use-global-map keymap Function
This function makes keymap the new current global keymap. It returns nil.

It is very unusual to change the global keymap.

use-local-map keymap Function
This function makes keymap the new current local keymap of the current buffer. If
keymap is nil, then there will be no local keymap. It returns nil. Most major modes

use this function.

minor-mode-map-alist Variable
This variable is an alist describing keymaps that may or may not be active according
to the values of certain variables. Its elements look like this:

(variable . keymap)

The keymap keymap is active whenever variable has a non-nil value. Typically variable
is the variable which enables or disables a minor mode. See Section 20.2.2 [Keymaps
and Minor Modes], page 364.

When more than one minor mode keymap is active, their order of priority is the order

of minor-mode-map-alist.

See also minor-mode-key-binding in Section 19.9 [Functions for Key Lookup],
page 342.

19.8 Key Lookup

Key lookup is the process of finding the binding of a key sequence from a given keymap. Actual
execution of the binding is not part of key lookup.

Key lookup uses just the event types of each event in the key sequence; the rest of the event
is ignored. In fact, a key sequence used for key lookup may designate mouse events with just
their types (symbols) instead of with entire mouse events (lists). See Section 18.5 [Input Events],
page 299. Such a pseudo-key-sequence is insufficient for command-execute, but it is sufficient for

looking up or rebinding a key.

340 GNU Emacs Lisp Reference Manual

When the key sequence consists of multiple events, key lookup processes the events sequentially:
the binding of the first event is found, and must be a keymap; then the second event’s binding is
found in that keymap, and so on until all the events in the key sequence are used up. (The binding
thus found for the last event may or may not be a keymap.) Thus, the process of key lookup is
defined in terms of a simpler process for looking up a single event in a keymap. How that is done
depends on the type of object associated with the event in that keymap.

Let’s use the term keymap entry to describe the value directly associated with an event type
in a keymap. While any Lisp object may be stored as a keymap entry, not all make sense for key
lookup. Here is a list of the meaningful kinds of keymap entries:

nil nil means that the events used so far in the lookup form an undefined key. When a
keymap fails to mention an event type at all, that is equivalent to an entry of nil for
that type.

keymap The events used so far in the lookup form a prefix key. The next event of the key
sequence is looked up in keymap.

command The events used so far in the lookup form a complete key, and command is its binding.

string

vector The events used so far in the lookup form a complete key, whose binding is a keyboard
macro. See Section 18.13 [Keyboard Macros|, page 325, for more information.

list The meaning of a list depends on the types of the elements of the list.

e If the CAR of list is the symbol keymap, then the list is a keymap, and is treated
as a keymap (see above).

e If the CAR of list is 1ambda, then the list is a lambda expression. This is presumed
to be a command, and is treated as such (see above).

e If the CAR of list is a keymap and the CDR is an event type, then this is an indirect
entry:

(othermap . othertype)

When key lookup encounters an indirect entry, it looks up instead the binding of
othertype in othermap and uses that.

This feature permits you to define one key as an alias for another key. For example,
an entry whose CAR is the keymap called esc-map and whose CDR is 32 (the code
for space) means, “Use the global binding of Meta-SPC, whatever that may be.”

e If the CAR of list is a string, it serves as a menu item name if the keymap is used
as a menu. For executing the key, the string is discarded and the CDR of list is
used instead. (Any number of strings can be discarded from the front of the list
in this way.) See Section 19.6 [Menu Keymaps|, page 333.

Chapter 19: Keymaps 341

symbol The function definition of symbol is used in place of symbol. If that too is a symbol,
then this process is repeated, any number of times. Ultimately this should lead to an
object which is a keymap, a command or a keyboard macro. A list is allowed if it
is a keymap or a command, but indirect entries are not understood when found via
symbols.
Note that keymaps and keyboard macros (strings and vectors) are not valid functions,
so a symbol with a keymap, string or vector as its function definition is also invalid as
a function. It is, however, valid as a key binding. If the definition is a keyboard macro,
then the symbol is also valid as an argument to command-execute (see Section 18.3
[Interactive Call], page 294).

The symbol undef ined is worth special mention: it means to treat the key as undefined.
Strictly speaking, the key is defined, and its binding is the command undefined; but
that command does the same thing that is done automatically for an undefined key: it
rings the bell (by calling ding) but does not signal an error.

undefined is used in local keymaps to override a global key binding and make the key
“undefined” locally. A local binding of nil would fail to do this because it would not
override the global binding.

anything else
If any other type of object is found, the events used so far in the lookup form a complete
key, and the object is its binding, but the binding is not executable as a command.

In short, a keymap entry may be a keymap, a command, a keyboard macro, a symbol which
leads to one of them, or an indirection or nil. Here is an example of a sparse keymap with two
characters bound to commands and one bound to another keymap. This map is the normal value
of emacs-1lisp-mode-map. Note that 9 is the code for TAB, 127 for DEL, 27 for ESC, 17 for C-q and
24 for C-x.

(keymap (9 . lisp-indent-line)

(127 . backward-delete-char-untabify)
(27 keymap (17 . indent-sexp) (24 . eval-defun)))

19.9 Functions for Key Lookup

Here are the functions and variables pertaining to key lookup.

lookup-key keymap key &optional accept-defaults Function
This function returns the definition of key in keymap. If the string or vector key is not
a valid key sequence according to the prefix keys specified in keymap (which means it

342 GNU Emacs Lisp Reference Manual

is “too long” and has extra events at the end), then the value is a number, the number

of events at the front of key that compose a complete key.

If accept-defaults is non-nil, then lookup-key considers default bindings as well as
bindings for the specific events in key. Otherwise, lookup-key reports only bindings
for the specific sequence key, ignoring default bindings except when an element of key

is t.

All the other functions described in this chapter that look up keys use lookup-key.

(lookup-key (current-global-map) "\C-x\C-f")
= find-file

(lookup-key (current-global-map) "\C-x\C-£12345")
= 2

If key contains a meta character, that character is implicitly replaced by a two-character
sequence: the value of meta-prefix-char, followed by the corresponding non-meta
character. Thus, the first example below is handled by conversion into the second

example.

(lookup-key (current-global-map) "\M-f")
= forward-word

(lookup-key (current-global-map) "\ef")
= forward-word

This function does not modify the specified events in ways that discard information
as read-key-sequence does (see Section 18.6.1 [Key Sequence Input|, page 310). In
particular, it does not convert letters to lower case and it does not change drag events
to clicks.

undefined Command
Used in keymaps to undefine keys. It calls ding, but does not cause an error.

key-binding key &optional accept-defaults Function
This function returns the binding for key in the current keymaps, trying all the active
keymaps. The result is nil if key is undefined in the keymaps.

The argument accept-defaults controls checking for default bindings, as in Lookup-key.

Chapter 19: Keymaps 343

An error is signaled if key is not a string or a vector.

(key-binding "\C-x\C-f")
= find-file

local-key-binding key &optional accept-defaults Function
This function returns the binding for key in the current local keymap, or nil if it is
undefined there.

The argument accept-defaults controls checking for default bindings, as in lookup-key
(above).

global-key-binding key &optional accept-defaults Function
This function returns the binding for command key in the current global keymap, or

nil if it is undefined there.

The argument accept-defaults controls checking for default bindings, as in 1lookup-key

(above).

minor-mode-key-binding key &optional accept-defaults Function
This function returns a list of all the active minor mode bindings of key. More precisely,
it returns an alist of pairs (modename . binding), where modename is the the variable
which enables the minor mode, and binding is key’s binding in that mode. If key has

no minor-mode bindings, the value is nil.

If the first binding is a non-prefix, all subsequent bindings from other minor modes are
omitted, since they would be completely shadowed. Similarly, the list omits non-prefix

bindings that follow prefix bindings.

The argument accept-defaults controls checking for default bindings, as in 1lookup-key
(above).

meta-prefix-char Variable
This variable is the meta-prefix character code. It is used when translating a meta
character to a two-character sequence so it can be looked up in a keymap. For useful
results, the value should be a prefix event (see Section 19.5 [Prefix Keys], page 331).
The default value is 27, which is the ASCII code for ESC.

344 GNU Emacs Lisp Reference Manual

As long as the value of meta-prefix-char remains 27, key lookup translates M-b into
ESC b, which is normally defined as the backward-word command. However, if you set
meta-prefix-char to 24, the code for C-x, then Emacs will translate M-b into C-x b,
whose standard binding is the switch-to-buffer command.

meta-prefix-char
= 27
(key-binding "\M-b")
= backward-word

; The default value.

?\C-x ; The print representation
= 24 ; of a character.
(setq meta-prefix-char 24)
= 24
(key-binding "\M-b")
= switch-to-buffer ; Now, typing M-b is
; like typing C-x b.
(setq meta-prefix-char 27) ; Avoid confusion!
= 27 ; Restore the default value!

19.10 Changing Key Bindings

The way to rebind a key is to change its entry in a keymap. You can change the global keymap,
so that the change is effective in all buffers (except those that override the global binding with
a local one). Or you can change the current buffer’s local map, which usually affects all buffers
using the same major mode. The global-set-key and local-set-key functions are convenient
interfaces for these operations. Or you can use define-key and specify explicitly which map to
change.

People often use global-set-key in their ‘.emacs’ file for simple customization. For example,
(global-set-key "\C-x\C-\\" ’next-line)
or
(global-set-key [?\C-x ?\C-\\] ’next-line)

redefines C-x C-\ to move down a line.

Chapter 19: Keymaps 345

(global-set-key [M-mouse-1] ’mouse-set-point)
redefines the first (leftmost) mouse button, typed with the Meta key, to set point where you click.

In writing the key sequence to rebind, it is useful to use the special escape sequences for control
and meta characters (see Section 2.3.7 [String Type|, page 27). The syntax ‘\C-’ means that the
following character is a control character and ‘\M-’ means that the following character is a meta
character. Thus, the string "\M-x" is read as containing a single M-x, "\C-£f" is read as containing
a single C-f, and "\M-\C-x" and "\C-\M-x" are both read as containing a single C-M-x.

For the functions below, an error is signaled if keymap is not a keymap or if key is not a string
or vector representing a key sequence. However, you can use event types (symbols) as shorthand
for events that are lists.

define-key keymap key binding Function
This function sets the binding for key in keymap. (If key is more than one event long,
the change is actually made in another keymap reached from keymap.) The argument
binding can be any Lisp object, but only certain types are meaningful. (For a list of
meaningful types, see Section 19.8 [Key Lookup], page 340.) The value returned by
define-key is binding.

Every prefix of key must be a prefix key (i.e., bound to a keymap) or undefined;
otherwise an error is signaled.

If some prefix of key is undefined, then define-key defines it as a prefix key so that
the rest of key may be defined as specified.

The following example creates a sparse keymap and makes a number of bindings:

(setq map (make-sparse-keymap))
= (keymap)
(define-key map "\C-f" ’forward-char)
= forward-char
map
= (keymap (6 . forward-char))
; ; Build sparse submap for C-x and bind f in that.
(define-key map "\C-xf" ’forward-word)
= forward-word

346 GNU Emacs Lisp Reference Manual

map
= (keymap
(24 keymap ; C—x
(102 . forward-word)) ; f
(6 . forward-char)) ; C-f

;3 Bind C-p to the ctl-x-map.

(define-key map "\C-p" ctl-x-map)

;3 ctl-x-map

= [nil ... find-file ... backward-kill-sentence]
;3 Bind C-f to foo in the ctl-x-map.

(define-key map "\C-p\C-f" ’foo)

= ’foo
map
= (keymap ; Note foo in ctl-x-map.

(16 keymap [nil ... foo ... backward-kill-sentence])
(24 keymap

(102 . forward-word))
(6 . forward-char))

Note that storing a new binding for C-p C-f actually works by changing an entry in
ctl-x-map, and this has the effect of changing the bindings of both C-p C-f and C-x
C-f in the default global map.

substitute-key-definition olddef newdef keymap &optional oldmap Function
This function replaces olddef with newdef for any keys in keymap that were bound
to olddef. In other words, olddef is replaced with newdef wherever it appears. The

function returns nil.

For example, this redefines C-x C-f, if you do it in an Emacs with standard bindings:

(substitute-key-definition
’find-file ’find-file-read-only (current-global-map))

If oldmap is non-nil, then its bindings determine which keys to rebind. The rebindings
still happen in newmap, not in oldmap. Thus, you can change one map under the

control of the bindings in another. For example,

Chapter 19: Keymaps 347

(substitute-key-definition
’delete-backward-char ’my-funny-delete
my-map global-map)

puts the special deletion command in my-map for whichever keys are globally bound to
the standard deletion command.

Here is an example showing a keymap before and after substitution:

(setq map ’ (keymap
(?1 . olddef-1)
(72 . olddef-2)
(73 . olddef-1)))
= (keymap (49 . olddef-1) (50 . olddef-2) (51 . olddef-1))

(substitute-key-definition ’olddef-1 ’newdef map)

= nil

map

= (keymap (49 . newdef) (50 . olddef-2) (51 . newdef))

suppress-keymap keymap &optional nodigits Function
This function changes the contents of the full keymap keymap by replacing the self-
insertion commands for numbers with the digit-argument function, unless nodigits
is non-nil, and by replacing the functions for the rest of the printing characters with
undefined. This means that ordinary insertion of text is impossible in a buffer with a
local keymap on which suppress-keymap has been called.

suppress-keymap returns nil.

The suppress-keymap function does not make it impossible to modify a buffer, as it
does not suppress commands such as yank and quoted-insert. To prevent any modi-
fication of a buffer, make it read-only (see Section 24.6 [Read Only Buffers], page 436).

Since this function modifies keymap, you would normally use it on a newly created
keymap. Operating on an existing keymap that is used for some other purpose is likely
to cause trouble; for example, suppressing global-map would make it impossible to use
most of Emacs.

Most often, suppress-keymap is used to initialize local keymaps of modes such as
Rmail and Dired where insertion of text is not desirable and the buffer is read-only.

348 GNU Emacs Lisp Reference Manual

Here is an example taken from the file ‘emacs/lisp/dired.el’, showing how the local

keymap for Dired mode is set up:

(setq dired-mode-map (make-keymap))

(suppress-keymap dired-mode-map)

(define-key dired-mode-map "r" ’dired-rename-file)
(define-key dired-mode-map "\C-d" ’dired-flag-file-deleted)
(define-key dired-mode-map "d" ’dired-flag-file-deleted)
(define-key dired-mode-map "v" ’dired-view-file)
(define-key dired-mode-map "e" ’dired-find-file)
(define-key dired-mode-map "f" ’dired-find-file)

19.11 Commands for Binding Keys

This section describes some convenient interactive interfaces for changing key bindings. They
work by calling define-key.

global-set-key key definition Command
This function sets the binding of key in the current global map to definition.

(global-set-key key definition)

(define-key (current-global-map) key definition)

global-unset-key key Command
This function removes the binding of key from the current global map.

One use of this function is in preparation for defining a longer key which uses it im-
plicitly as a prefix—which would not be allowed if key has a non-prefix binding. For
example:

(global-unset-key "\C-1")
= nil

(global-set-key "\C-1\C-1" ’redraw-display)
= nil

Chapter 19: Keymaps 349

This function is implemented simply using define-key:

(global-unset-key key)

(define-key (current-global-map) key nil)

local-set-key key definition Command
This function sets the binding of key in the current local keymap to definition.

(local-set-key key definition)

(define-key (current-local-map) key definition)

local-unset-key key Command

This function removes the binding of key from the current local map.

(local-unset-key key)

(define-key (current-local-map) key nil)

19.12 Scanning Keymaps

This section describes functions used to scan all the current keymaps for the sake of printing
help information.

accessible-keymaps keymap Function
This function returns a list of all the keymaps that can be accessed (via prefix keys)
from keymap. The value is an association list with elements of the form (key . map),
where key is a prefix key whose definition in keymap is map.

The elements of the alist are ordered so that the key increases in length. The first
element is always ("" . keymap), because the specified keymap is accessible from itself
with a prefix of no events.

In the example below, the returned alist indicates that the key ESC, which is displayed
as ‘" [’, is a prefix key whose definition is the sparse keymap (keymap (83 . center-
paragraph) (115 . foo)).

350 GNU Emacs Lisp Reference Manual

(accessible-keymaps (current-local-map))
= (("" keymap
(27 keymap ; Note this keymap for ESC is repeated below.
(83 . center-paragraph)
(115 . center-line))
(9 . tab-to-tab-stop))

(n- [Il keymap
(83 . center-paragraph)
(115 . £00)))

In the following example, C-h is a prefix key that uses a sparse keymap starting (keymap
(118 . describe-variable)...). Another prefix, C-x 4, uses a keymap which happens
to be ctl-x-4-map. The event mode-line is one of several dummy events used as

prefixes for mouse actions in special parts of a window.

(accessible-keymaps (current-global-map))
= (("" keymap [set-mark-command beginning-of-line ...
delete-backward-char])
(""H" keymap (118 . describe-variable) ...

(8 . help-for-help))

(""X" keymap [x-flush-mouse-queue ... backward-kill-sentence])
("~ [" keymap [mark-sexp backward-sexp ... backward-kill-word])
(""X4" keymap (15 . display-buffer) ...)

([mode-line] keymap

(S-mouse-2 . mouse-split-window-horizontally) ...))

These are not all the keymaps you would see in an actual case.

where-is-internal command &optional keymap firstonly Function
This function returns a list of key sequences (of any length) that are bound to command
in keymap and the global keymap. The argument command can be any object; it is
compared with all keymap entries using eq. If keymap is not supplied, then the global
map alone is used.

If firstonly is non-nil, then the value is a single string representing the first key sequence
found, rather than a list of all possible key sequences.

This function is used by where-is (see section “Help” in The GNU Emacs Manual).

Chapter 19: Keymaps 351

(where-is-internal ’describe-function)
= ("\‘hf" ll\"hdll)

describe-bindings Command
This function creates a listing of all defined keys, and their definitions. The listing is
put in a buffer named ‘*Help*’, which is then displayed in a window.

A meta character is shown as ESC followed by the corresponding non-meta character.
Control characters are indicated with C-.

When several characters with consecutive ASCII codes have the same definition, they
are shown together, as ‘firstchar. .lastchar’. In this instance, you need to know the
ASCII codes to understand which characters this means. For example, in the default
global map, the characters ‘SPC .. ~’ are described by a single line. SPC is ASCII
32, ~ is ASCII 126, and the characters between them include all the normal printing
characters, (e.g., letters, digits, punctuation, etc.); all these characters are bound to
self-insert-command.

352 GNU Emacs Lisp Reference Manual

Chapter 20: Major and Minor Modes 353

20 Major and Minor Modes

A mode is a set of definitions that customize Emacs and can be turned on and off while you
edit. There are two varieties of modes: major modes, which are mutually exclusive and used for
editing particular kinds of text, and minor modes, which provide features that may be enabled
individually.

This chapter covers both major and minor modes, the way they are indicated in the mode line,
and how they run hooks supplied by the user. Related topics such as keymaps and syntax tables
are covered in separate chapters. (See Chapter 19 [Keymaps], page 327, and Chapter 31 [Syntax
Tables|, page 583.)

20.1 Major Modes

Major modes specialize Emacs for editing particular kinds of text. Each buffer has only one
major mode at a time.

The least specialized major mode is called Fundamental mode. This mode has no mode-specific
definitions or variable settings, so each Emacs command behaves in its default manner, and each
option is in its default state. All other major modes redefine various keys and options. For example,
Lisp Interaction mode provides special key bindings for LFD (eval-print-last-sexp), TAB (1isp-

indent-line), and other keys.

When you need to write several editing commands to help you perform a specialized editing
task, creating a new major mode is usually a good idea. In practice, writing a major mode is easy

(in contrast to writing a minor mode, which is often difficult).

If the new mode is similar to an old one, it is often unwise to modify the old one to serve two
purposes, since it may become harder to use and maintain. Instead, copy and rename an existing
major mode definition and alter it for its new function. For example, Rmail Edit mode, which is
in ‘emacs/lisp/rmailedit.el’; is a major mode that is very similar to Text mode except that
it provides three additional commands. Its definition is distinct from that of Text mode, but was
derived from it.

Rmail Edit mode is an example of a case where one piece of text is put temporarily into a
different major mode so it can be edited in a different way (with ordinary Emacs commands rather
than Rmail). In such cases, the temporary major mode usually has a command to switch back to

354 GNU Emacs Lisp Reference Manual

the buffer’s usual mode (Rmail mode, in this case). You might be tempted to present the temporary
redefinitions inside a recursive edit and restore the usual ones when the user exits; but this is a bad
idea because it constrains the user’s options when it is done in more than one buffer: recursive edits
must be exited most-recently-entered first. Using alternative major modes avoids this limitation.
See Section 18.10 [Recursive Editing], page 321.

The standard GNU Emacs Lisp library directory contains the code for several major modes, in
files including ‘text-mode.el’; ‘texinfo.el’, ‘lisp-mode.el’, ‘c-mode.el’, and ‘rmail.el’. You
can look at these libraries to see how modes are written. Text mode is perhaps the simplest major
mode aside from Fundamental mode. Rmail mode is a rather complicated, full-featured mode.

20.1.1 Major Mode Conventions

The code for existing major modes follows various coding conventions, including conventions
for local keymap and syntax table initialization, global names, and hooks. Please keep these

conventions in mind when you create a new major mode:

e Define a command whose name ends in ‘-mode’, with no arguments, that switches to the new
mode in the current buffer. This command should set up the keymap, syntax table, and local
variables in an existing buffer without changing the buffer’s text.

e Write a documentation string for this command which describes the special commands available
in this mode. C-h m (describe-mode) will print this.

The documentation string may include the special documentation substrings, ‘\ [command]’,
\{keymap}’, and ‘\<keymap>’, that enable the documentation to adapt automatically to the
user’s own key bindings. See Section 21.3 [Keys in Documentation], page 379. The describe-
mode function replaces these special documentation substrings with their current meanings.
See Section 21.2 [Accessing Documentation|, page 376.

e The major mode command should set the variable major-mode to the major mode command
symbol. This is how describe-mode discovers which documentation to print.

e The major mode command should set the variable mode-name to the “pretty” name of the

mode, as a string. This appears in the mode line.

e Since all global names are in the same name space, all the global variables, constants, and
functions that are part of the mode should have names that start with the major mode name
(or with an abbreviation of it if the name is long). See Section A.1 [Style Tips|, page 685.

e The major mode should usually have its own keymap, which is used as the local keymap in
all buffers in that mode. The major mode function should call use-local-map to install this
local map. See Section 19.7 [Active Keymaps|, page 337, for more information.

Chapter 20: Major and Minor Modes 355

This keymap should be kept in a global variable named modename-mode-map. Normally the
library that defines the mode sets this variable. Use defvar to set the variable, so that it is
not reinitialized if it already has a value. (Such reinitialization could discard customizations
made by the user.)

e The mode may have its own syntax table or may share one with other related modes. If it has
its own syntax table, it should store this in a variable named modename-mode-syntax-table.
The reasons for this are the same as for using a keymap variable. See Chapter 31 [Syntax
Tables]|, page 583.

e The mode may have its own abbrev table or may share one with other related modes. If it has
its own abbrev table, it should store this in a variable named modename-mode-abbrev-table.
See Section 32.2 [Abbrev Tables], page 596.

e To give a variable a buffer-local binding, use make-local-variable in the major mode com-
mand, not make-variable-buffer-local. The latter function would make the variable local
to every buffer in which it is subsequently set, which would affect buffers that do not use this
mode. It is undesirable for a mode to have such global effects. See Section 10.9 [Buffer-Local

Variables], page 166.

e If hooks are appropriate for the mode, the major mode command should run the hooks after
completing all other initialization so the user may further customize any of the settings. See
Section 20.4 [Hooks|, page 371.

e If this mode is appropriate only for specially-prepared text, then the major mode command

symbol should have a property named mode-class with value special, put on as follows:

(put ’funny-mode ’mode-class ’special)

This tells Emacs that new buffers created while the current buffer has Funny mode should not

inherit Funny mode. Modes such as Dired, Rmail, and Buffer List use this feature.

e If it is desirable that Emacs use the new mode by default after visiting files with certain
recognizable names, add an element to auto-mode-alist to select the mode for those file
names. If you define the mode command to autoload, you should add this element in the same
file that calls autoload. Otherwise, it is sufficient to add the element in the file that contains
the mode definition. See Section 20.1.3 [Auto Major Mode], page 360.

e In the documentation, you should provide a sample autoload form and an example of how to
add to auto-mode-alist, that users can include in their ‘. emacs’ files.

e The top level forms in the file defining the mode should be written so that they may be
evaluated more than once without adverse consequences. Even if you never load the file more
than once, someone else will.

356 GNU Emacs Lisp Reference Manual

20.1.2 Major Mode Examples

Text mode is perhaps the simplest mode besides Fundamental mode. Here are excerpts from
‘text-mode.el’ that illustrate many of the conventions listed above

;3 Create mode-specific tables.
(defvar text-mode-syntax-table nil
"Syntax table used while in text mode.")

(if text-mode-syntax-table
O ; Do not change the table if it is already set up.
(setq text-mode-syntax-table (make-syntax-table))
(modify-syntax-entry 7\" ". " text-mode-syntax-table)
(modify-syntax-entry 7\\ ". " text-mode-syntax-table)
(modify-syntax-entry 7’ "w " text-mode-syntax-table))
(defvar text-mode-abbrev-table nil
"Abbrev table used while in text mode.")
(define-abbrev-table ’text-mode-abbrev-table ())

(defvar text-mode-map nil) ; Create a mode-specific keymap.

(if text-mode-map
O ; Do not change the keymap if it is already set up.
(setq text-mode-map (make-sparse-keymap))
(define-key text-mode-map "\t" ’tab-to-tab-stop)
(define-key text-mode-map "\es" ’center-line)
(define-key text-mode-map "\eS" ’center-paragraph))

Here is the complete major mode function definition for Text mode:

(defun text-mode ()
"Major mode for editing text intended for humans to read.
Special commands: \\{text-mode-map}
Turning on text-mode runs the hook ‘text-mode-hook’."
(interactive)
(kill-all-local-variables)

Chapter 20: Major and Minor Modes 357

(use-local-map text-mode-map) ; This provides the local keymap.
(setq mode-name "Text") ; This name goes into the mode line.
(setq major-mode ’text-mode) ; This is how describe-mode

; finds the doc string to print.
(setq local-abbrev-table text-mode-abbrev-table)
(set-syntax-table text-mode-syntax-table)
(run-hooks ’text-mode-hook)) ; Finally, this permits the user to

; customize the mode with a hook.

The three Lisp modes (Lisp mode, Emacs Lisp mode, and Lisp Interaction mode) have more
features than Text mode and the code is correspondingly more complicated. Here are excerpts from

‘lisp-mode.el’ that illustrate how these modes are written.

;; Create mode-specific table variables.
(defvar lisp-mode-syntax-table nil "")
(defvar emacs-lisp-mode-syntax-table nil "")
(defvar lisp-mode-abbrev-table nil "")
(if (not emacs-lisp-mode-syntax-table) ; Do not change the table
; if it is already set.
(let ((i 0))
(setq emacs-lisp-mode-syntax-table (make-syntax-table))

;5 Set syntax of chars up to 0 to class of chars that are

;3 part of symbol names but not words.

;5 (The number 0 is 48 in the ASCII character set.)

(while (< i 70)
(modify-syntax-entry i "_ " emacs-lisp-mode-syntax-table)
(setq i (1+ 1)))

;5 Set the syntax for other characters.

(modify-syntax-entry 7 " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry 7\t " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\("() " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\) ")(" emacs-lisp-mode-syntax-table)
o))

;; Create an abbrev table for lisp-mode.
(define-abbrev-table ’lisp-mode-abbrev-table ())

358 GNU Emacs Lisp Reference Manual

Much code is shared among the three Lisp modes. The following function sets various variables;

it is called by each of the major Lisp mode functions:

(defun lisp-mode-variables (lisp-syntax)
;3 The lisp-syntax argument is nil in Emacs Lisp mode,
s and t in the other two Lisp modes.
(cond (lisp-syntax
(if (not lisp-mode-syntax-table)
;3 The Emacs Lisp mode syntax table always exists, but
;3 the Lisp Mode syntax table is created the first time a
e mode that needs it is called. This is to save space
(progn (setq lisp-mode-syntax-table
(copy-syntax-table emacs-lisp-mode-syntax-table))
; ;5 Change some entries for Lisp mode.
(modify-syntax-entry ?\| "\" "
lisp-mode-syntax-table)
(modify-syntax-entry ?\["_ "
lisp-mode-syntax-table)
(modify-syntax-entry ?\] "_ "
lisp-mode-syntax-table)))
(set-syntax-table lisp-mode-syntax-table)))
(setq local-abbrev-table lisp-mode-abbrev-table)
)

Functions such as forward-paragraph use the value of the paragraph-start variable. Since
Lisp code is different from ordinary text, the paragraph-start variable needs to be set specially
to handle Lisp. Also, comments are indented in a special fashion in Lisp and the Lisp modes need
their own mode-specific comment-indent-function. The code to set these variables is the rest of
lisp-mode-variables.

(make-local-variable ’paragraph-start)
(setq paragraph-start (concat "“$\\|" page-delimiter))

(make-local-variable ’comment-indent-function)
(setq comment-indent-function ’lisp-comment-indent))

Each of the different Lisp modes has a slightly different keymap. For example, Lisp mode
binds C-c C-1 to run-1lisp, but the other Lisp modes do not. However, all Lisp modes have some
commands in common. The following function adds these common commands to a given keymap.

Chapter 20: Major and Minor Modes 359

(defun lisp-mode-commands (map)
(define-key map "\e\C-q" ’indent-sexp)
(define-key map "\177" ’backward-delete-char-untabify)
(define-key map "\t" ’lisp-indent-line))

Here is an example of using lisp-mode-commands to initialize a keymap, as part of the code
for Emacs Lisp mode. First we declare a variable with defvar to hold the mode-specific keymap.
When this defvar executes, it sets the variable to nil if it was void. Then we set up the keymap

if the variable is nil.

This code avoids changing the keymap or the variable if it is already set up. This lets the user

customize the keymap if he or she so wishes.

(defvar emacs-lisp-mode-map () "")

(if emacs-lisp-mode-map
O
(setq emacs-lisp-mode-map (make-sparse-keymap))
(define-key emacs-lisp-mode-map "\e\C-x" ’eval-defun)

(1isp-mode-commands emacs-lisp-mode-map))

Finally, here is the complete major mode function definition for Emacs Lisp mode.

(defun emacs-lisp-mode ()

"Major mode for editing Lisp code to run in Emacs.
Commands :
Delete converts tabs to spaces as it moves back.
Blank lines separate paragraphs. Semicolons start comments.
\\{emacs-lisp-mode-map}

Entry to this mode runs the hook ‘emacs-lisp-mode-hook’."

(interactive)
(kill-all-local-variables)
(use-local-map emacs-lisp-mode-map) ; This provides the local keymap.

(set-syntax-table emacs-lisp-mode-syntax-table)

(setq major-mode ’emacs-lisp-mode) ; This is how describe-mode

; finds out what to describe.
(setq mode-name "Emacs-Lisp") ; This goes into the mode line.
(lisp-mode-variables nil) ; This define various variables.
(run-hooks ’emacs-lisp-mode-hook)) ; This permits the user to use a

; hook to customize the mode.

360 GNU Emacs Lisp Reference Manual

20.1.3 How Emacs Chooses a Major Mode

Based on information in the file name or in the file itself, Emacs automatically selects a major
mode for the new buffer when a file is visited.

fundamental-mode Command
Fundamental mode is a major mode that is not specialized for anything in particular.
Other major modes are defined in effect by comparison with this one—their definitions
say what to change, starting from Fundamental mode. The fundamental-mode function
does not run any hooks, so it is not readily customizable.

normal-mode &optional find-file Command
This function establishes the proper major mode and local variable bindings for the
current buffer. First it calls set-auto-mode, then it runs hack-local-variables to

parse, and bind or evaluate as appropriate, any local variables.

If the find-file argument to normal-mode is non-nil, normal-mode assumes that the
find-file function is calling it. In this case, it may process a local variables list at
the end of the file. The variable enable-local-variables controls whether to do so.

If you run normal-mode yourself, the argument find-file is normally nil. In this case,
normal-mode unconditionally processes any local variables list. See section “Local
Variables in Files” in The GNU Emacs Manual, for the syntax of the local variables
section of a file.

normal-mode uses condition-case around the call to the major mode function, so
errors are caught and reported as a ‘File mode specification error’, followed by
the original error message.

enable-local-variables User Option
This variable controls processing of local variables lists in files being visited. A value
of t means process the local variables lists unconditionally; nil means ignore them;
anything else means ask the user what to do for each file. The default value is t.

enable-local-eval User Option
This variable controls processing of ‘Eval:’ in local variables lists in files being visited.
A value of t means process them unconditionally; nil means ignore them; anything
else means ask the user what to do for each file. The default value is maybe.

Chapter 20: Major and Minor Modes 361

set-auto-mode Function
This function selects the major mode that is appropriate for the current buffer. It may
base its decision on the value of the ‘-*-’ line, on the visited file name (using auto-
mode-alist), or on the value of a local variable). However, this function does not
look for the ‘mode:’ local variable near the end of a file; the hack-local-variables
function does that. See section “How Major Modes are Chosen” in The GNU Emacs
Manual.

default-major-mode User Option
This variable holds the default major mode for new buffers. The standard value is
fundamental-mode.

If the value of default-major-mode is nil, Emacs uses the (previously) current buffer’s
major mode for the major mode of a new buffer. However, if the major mode symbol
has a mode-class property with value special, then it is not used for new buffers;
Fundamental mode is used instead. The modes that have this property are those such
as Dired and Rmail that are useful only with text that has been specially prepared.

initial-major-mode Variable
The value of this variable determines the major mode of the initial ‘*scratch*’ buffer.
The value should be a symbol that is a major mode command name. The default value

is lisp-interaction-mode.

auto-mode-alist Variable
This variable contains an association list of file name patterns (regular expressions; see
Section 30.2 [Regular Expressions|, page 565) and corresponding major mode functions.
Usually, the file name patterns test for suffixes, such as ‘.el” and ‘.c’, but this need
not be the case. Each element of the alist looks like (regexp . mode-function).

For example,

(("~/tmp/fol/" . text-mode)
("\\.texinfo$" . texinfo-mode)
("\\.texi$" . texinfo-mode)
("\\.el$" . emacs-lisp-mode)
("M\\.c$" . c-mode)

("\\.h$" . c-mode)
)

362 GNU Emacs Lisp Reference Manual

When you visit a file whose expanded file name (see Section 22.10.4 [File Name Ex-
pansion], page 410) matches a regexp, set-auto-mode calls the corresponding mode-
function. This feature enables Emacs to select the proper major mode for most files.

Here is an example of how to prepend several pattern pairs to auto-mode-alist. (You

might use this sort of expression in your ‘.emacs’ file.)

(setq auto-mode-alist
(append
;; Filename starts with a dot.
>(("/\\.["/]1*$" . fundamental-mode)
;3 Filename has no dot.
("["\\./1*$" . fundamental-mode)
("\\.C$" . c++-mode))
auto-mode-alist))

hack-local-variables &optional force Function
This function parses, and binds or evaluates as appropriate, any local variables for the

current buffer.

The handling of enable-local-variables documented for normal-mode actually takes
place here. The argument force reflects the argument find-file given to normal-mode.

20.1.4 Getting Help about a Major Mode

The describe-mode function is used to provide information about major modes. It is normally
called with C-h m. The describe-mode function uses the value of major-mode, which is why every

major mode function needs to set the major-mode variable.

describe-mode Command
This function displays the documentation of the current major mode.

The describe-mode function calls the documentation function using the value of
major-mode as an argument. Thus, it displays the documentation string of the major
mode function. (See Section 21.2 [Accessing Documentation], page 376.)

Chapter 20: Major and Minor Modes 363

major-mode Variable
This variable holds the symbol for the current buffer’s major mode. This symbol should
be the name of the function that is called to initialize the mode. The describe-mode
function uses the documentation string of this symbol as the documentation of the

major mode.

20.2 Minor Modes

A minor mode provides features that users may enable or disable independently of the choice of
major mode. Minor modes can be enabled individually or in combination. Minor modes would be
better named “Generally available, optional feature modes” except that such a name is unwieldy.

A minor mode is not usually a modification of single major mode. For example, Auto Fill mode
may be used in any major mode that permits text insertion. To be general, a minor mode must be
effectively independent of the things major modes do.

A minor mode is often much more difficult to implement than a major mode. One reason is that
you should be able to deactivate a minor mode and restore the environment of the major mode to
the state it was in before the minor mode was activated.

Often the biggest problem in implementing a minor mode is finding a way to insert the necessary
hook into the rest of Emacs. Minor mode keymaps make this easier.

20.2.1 Conventions for Writing Minor Modes

There are conventions for writing minor modes just as there are for major modes. Several of
the major mode conventions apply to minor modes as well: those regarding the name of the mode
initialization function, the names of global symbols, and the use of keymaps and other tables.

In addition, there are several conventions that are specific to minor modes.

e Make a variable whose name ends in ‘-mode’ to represent the minor mode. Its value should
enable or disable the mode (nil to disable; anything else to enable.) We call this the mode
variable.

This variable is used in conjunction with the minor-mode-alist to display the minor mode
name in the mode line. It can also enable or disable a minor mode keymap. Individual
commands or hooks can also check the variable’s value.

364 GNU Emacs Lisp Reference Manual

If you want the minor mode to be enabled separately in each buffer, make the variable buffer-
local.

e Define a command whose name is the same as the mode variable. Its job is to enable and
disable the mode by setting the variable.

The command should accept one optional argument. If the argument is nil, it should toggle
the mode (turn it on if it is off, and off if it is on). Otherwise, it should turn the mode on if
the argument is a positive integer, a symbol other than nil or -, or a list whose CAR is such
an integer or symbol; it should turn the mode off otherwise.

Here is an example taken from the definition of overwrite-mode. It shows the use of
overwrite-mode as a variable which enables or disables the mode’s behavior.
(setq overwrite-mode
(if (null arg) (not overwrite-mode)

(> (prefix-numeric-value arg) 0)))

e Add an element to minor-mode-alist for each minor mode (see Section 20.3.2 [Mode Line
Variables|, page 368). This element should be a list of the following form:

(mode-variable string)

Here mode-variable is the variable that controls enablement of the minor mode, and string is
a short string, starting with a space, to represent the mode in the mode line. These strings
must be short so that there is room for several of them at once.

When you add an element to minor-mode-alist, use assq to check for an existing element,
to avoid duplication. For example:

(or (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist)))

20.2.2 Keymaps and Minor Modes

As of Emacs version 19, each minor mode can have its own keymap which is active when the
mode is enabled. See Section 19.7 [Active Keymaps]|, page 337. To set up a keymap for a minor
mode, add an element to the alist minor-mode-map-alist.

One use of minor mode keymaps is to modify the behavior of certain self-inserting characters so
that they do something else as well as self-insert. This is the only way to accomplish this in general,
since there is no way to customize what self-insert-command does except in certain special cases
(designed for abbrevs and Auto Fill mode). (Do not try substituting your own definition of self-
insert-command for the standard one. The editor command loop handles this function specially.)

Chapter 20: Major and Minor Modes 365

minor-mode-map-alist Variable
This variable is an alist of elements element that look like this:

(variable . keymap)

where variable is the variable which indicates whether the minor mode is enabled, and
keymap is the keymap. The keymap keymap is active whenever variable has a non-nil
value.

Note that elements of minor-mode-map-alist do not have the same structure as ele-
ments of minor-mode-alist. The map must be the CDR of the element; a list with the
map as the second element will not do.

What’s more, the keymap itself must appear in the CDR. It does not work to store a
variable in the CDR and make the map the value of that variable.

When more than one minor mode keymap is active, their order of priority is the order
of minor-mode-map-alist. But you should design minor modes so that they don’t
interfere with each other. If you do this properly, the order will not matter.

20.3 Mode Line Format

Each Emacs window (aside from minibuffer windows) includes a mode line which displays status
information about the buffer displayed in the window. The mode line contains information about
the buffer such as its name, associated file, depth of recursive editing, and the major and minor
modes of the buffer.

This section describes how the contents of the mode line are controlled. It is in the chapter on
modes because much of the information displayed in the mode line relates to the enabled major
and minor modes.

mode-line-format is a buffer-local variable that holds a template used to display the mode line
of the current buffer. All windows for the same buffer use the same mode-line-format and the
mode lines will appear the same (except perhaps for the percentage of the file scrolled off the top).

The mode line of a window is normally updated whenever a different buffer is shown in the
window, or when the buffer’s modified-status changes from nil to t or vice-versa. If you modify

366 GNU Emacs Lisp Reference Manual

any of the variables referenced by mode-line-format, you may want to force an update of the

mode line so as to display the new information.

force-mode-line-update Function
Force redisplay of the current buffer’s mode line.

The mode line is usually displayed in inverse video; see mode-line-inverse-video in Sec-
tion 35.11 [Inverse Video], page 662.

20.3.1 The Data Structure of the Mode Line

The mode line contents are controlled by a data structure of lists, strings, symbols and numbers
kept in the buffer-local variable mode-line-format. The data structure is called a mode line
construct, and it is built in recursive fashion out of simpler mode line constructs.

mode-line-format Variable
The value of this variable is a mode line construct with overall responsibility for the
mode line format. The value of this variable controls which other variables are used to
form the mode line text, and where they appear.

A mode line construct may be as simple as a fixed string of text, but it usually specifies how to
use other variables to construct the text. Many of these variables are themselves defined to have
mode line constructs as their values.

The default value of mode-1line-format incorporates the values of variables such as mode-name
and minor-mode-alist. Because of this, very few modes need to alter mode-line-format. For
most purposes, it is sufficient to alter the variables referenced by mode-line-format.

A mode line construct may be a list, cons cell, symbol, or string. If the value is a list, each

element may be a list, a cons cell, a symbol, or a string.

string A string as a mode line construct is displayed verbatim in the mode line except for
%-constructs. Decimal digits after the % specify the field width for space filling on the
right (i.e., the data is left justified). See Section 20.3.3 [%-Constructs|, page 370.

symbol A symbol as a mode line construct stands for its value. The value of symbol is used in
place of symbol unless symbol is t or nil, or is void, in which case symbol is ignored.

Chapter 20: Major and Minor Modes 367

There is one exception: if the value of symbol is a string, it is processed verbatim in

that the J%-constructs are not recognized.

(string rest...) or (list rest...)
A list whose first element is a string or list, means to concatenate all the elements.
This is the most common form of mode line construct.

(symbol then else)
A list whose first element is a symbol is a conditional. Its meaning depends on the value
of symbol. If the value is non-nil, the second element of the list (then) is processed
recursively as a mode line element. But if the value of symbol is nil, the third element
of the list (if there is one) is processed recursively.

(width rest...)
A list whose first element is an integer specifies truncation or padding of the results of
rest. The remaining elements rest are processed recursively as mode line constructs and
concatenated together. Then the result is space filled (if width is positive) or truncated
(to —width columns, if width is negative) on the right.

For example, the usual way to show what percentage of a buffer is above the top of the
window is to use a list like this: (-3 . "%p").

If you do alter mode-line-format itself, the new value should use all the same variables that
are used by the default value, rather than duplicating their contents or displaying the information
in another fashion. This permits customizations made by the user, by libraries (such as display-

time) or by major modes via changes to those variables remain effective.

Here is an example of a mode-line-format that might be useful for shell-mode since it contains

the hostname and default directory.

(setq mode-line-format
(list "
’mode-line-modified
" °/°b__ "

368 GNU Emacs Lisp Reference Manual

(getenv "HOST") ; One element is not constant.

’default-directory
n n
’global-mode-string
" %[(" ’mode-name

‘minor-mode-alist

Il%nll
’mode-line-process
DYARSST

(=3 . "%p")
"=%="))

20.3.2 Variables Used in the Mode Line

This section describes variables incorporated by the standard value of mode-line-format into
the text of the mode line. There is nothing inherently special about these variables; any other
variables could have the same effects on the mode line if mode-line-format were changed to use

them.

mode-line-modified Variable
This variable holds the value of the mode-line construct that displays whether the

current buffer is modified.

The default value of mode-line-modified is ("--%1*%1*-"). This means that the
mode line displays ‘—-#**-" if the buffer is modified, ‘----- " if the buffer is not modified,
and ‘=-%%-" if the buffer is read only.

Changing this variable does not force an update of the mode line.

mode-line-buffer-identification Variable
This variable identifies the buffer being displayed in the window. Its default value is
‘Emacs: %17b’, which means that it displays ‘Emacs:’ followed by the buffer name. You
may want to change this in modes such as Rmail that do not behave like a “normal”

Emacs.

Chapter 20: Major and Minor Modes 369

global-mode-string Variable
This variable holds a string that is displayed in the mode line. The command display-
time puts the time and load in this variable. The ‘%M’ construct substitutes the value
of global-mode-string, but this is obsolete, since the variable is included directly in
the mode line.

mode-name Variable
This buffer-local variable holds the “pretty” name of the current buffer’s major mode.
Each major mode should set this variable so that the mode name will appear in the
mode line.

minor-mode-alist Variable
This variable holds an association list whose elements specify how the mode line should
indicate that a minor mode is active. Each element of the minor-mode-alist should
be a two-element list:

(minor-mode-variable mode-line-string)

The string mode-line-string is included in the mode line when the value of minor-mode-
variable is non-nil and not otherwise. These strings should begin with spaces so that
they don’t run together. Conventionally, the minor-mode-variable for a specific mode
is set to a non-nil value when that minor mode is activated.

The default value of minor-mode-alist is:

minor-mode-alist

= ((abbrev-mode " Abbrev")
(overwrite-mode " Ovwrt")
(auto-fill-function " Fill")
(defining-kbd-macro " Def"))

(In earlier Emacs versions, auto-fill-function was called auto-fill-hook.)

minor-mode-alist is not buffer-local. The variables mentioned in the alist should be

buffer-local if the minor mode can be enabled separately in each buffer.

370 GNU Emacs Lisp Reference Manual

mode-line-process Variable
This buffer-local variable contains the mode line information on process status in modes
used for communicating with subprocesses. It is displayed immediately following the
major mode name, with no intervening space. For example, its value in the ‘*shell%’
buffer is (": %s"), which allows the shell to display its status along with the major

mode as: ‘(Shell: run)’. Normally this variable is nil.

default-mode-line-format Variable
This variable holds the default mode-1line-format for buffers that do not override it.

This is the same as (default-value ’mode-line-format).

The default value of default-mode-line-format is:

(llll
mode-line-modified
mode-line-buffer-identification
global-mode-string
ARG
mode-name
minor-mode-alist
ll%nll
mode-line-process
DYARS

(=3 . "%p")

"=%=")

20.3.3 %-Constructs in the Mode Line

The following table lists the recognized %-constructs and what they mean.

%b the current buffer name, using the buffer-name function.
Wt the visited file name, using the buffer-file-name function.
ok ‘% if the buffer is read only (see buffer-read-only);

*” if the buffer is modified (see buffer-modified-p);

‘=’ otherwise.

hs the status of the subprocess belonging to the current buffer, using process-status.

Chapter 20: Major and Minor Modes 371

hp the percent of the buffer above the top of window, or ‘Top’, ‘Bottom’ or ‘A11’.

%n ‘Narrow’ when narrowing is in effect; nothing otherwise (see narrow-to-region in
Section 27.4 [Narrowing], page 503).

Al an indication of the depth of recursive editing levels (not counting minibuffer levels):
one ‘[’ for each editing level.

%] one ‘]’ for each recursive editing level (not counting minibuffer levels).

Dot the character ‘%’—this is how to include a literal ‘)’ in a string in which %-constructs

are allowed.

h- dashes sufficient to fill the remainder of the mode line.

The following two %-constructs are still supported but are obsolete since use of the mode-name

and global-mode-string variables will produce the same results.

Y%m the value of mode-name.

WM the value of global-mode-string. Currently, only display-time modifies the value
of global-mode-string.

20.4 Hooks

A hook is a variable where you can store a function or functions to be called on a particular
occasion by an existing program. Emacs provides lots of hooks for the sake of customization. Most
often, hooks are set up in the ‘.emacs’ file, but Lisp programs can set them also. See Appendix F
[Standard Hooks], page 715, for a list of standard hook variables.

Most of the hooks in Emacs are normal hooks. These variables contain lists of functions to be
called with no arguments. The reason most hooks are normal hooks is so that you can use them
in a uniform way. You can always tell when a hook is a normal hook, because its name ends in
‘~hook’.

The recommended way to add a hook function to a normal hook is by calling add-hook (see
below). The hook functions may be any of the valid kinds of functions that funcall accepts
(see Section 11.1 [What Is a Function], page 173). Most normal hook variables are initially void,;
add-hook knows how to deal with this.

¢

As for abnormal hooks, those whose names end in ‘-function’ have a value which is a single

function. Those whose names end in ‘~hooks’ have a value which is a list of functions. Any hook

372 GNU Emacs Lisp Reference Manual

which is abnormal is abnormal because a normal hook won’t do the job; either the functions are
called with arguments, or their values are meaningful. The name shows you that the hook is

abnormal and you need to look up how to use it properly.

Most major modes run hooks as the last step of initialization. This makes it easy for a user to
customize the behavior of the mode, by overriding the local variable assignments already made by
the mode. But hooks may also be used in other contexts. For example, the hook suspend-hook
runs just before Emacs suspends itself (see Section 34.2.2 [Suspending Emacs], page 630).

For example, you can put the following expression in your ‘.emacs’ file if you want to turn on
Auto Fill mode when in Lisp Interaction mode:

(add-hook ’lisp-interaction-mode-hook ’turn-on-auto-fill)

The next example shows how to use a hook to customize the way Emacs formats C code. (People
often have strong personal preferences for one format compared to another.) Here the hook function
is an anonymous lambda expression.

(add-hook ’c-mode-hook
(function (lambda ()
(setq c-indent-level 4
c-argdecl-indent O
c-label-offset -4
c-continued-statement-indent O
c-brace-offset 0O
comment-column 40))))

(setq c++-mode-hook c-mode-hook)

Finally, here is an example of how to use the Text mode hook to provide a customized mode line
for buffers in Text mode, displaying the default directory in addition to the standard components
of the mode line. (This may cause the mode line to run out of space if you have very long file

names or display the time and load.)

Chapter 20: Major and Minor Modes 373

(add-hook ’text-mode-hook
(function (lambda ()
(setq mode-line-format
> (mode-line-modified
"Emacs: %14b"

default-directory

global-mode-string
"%LC

mode-name
minor-mode-alist
ll%nll
mode-line-process
DIVAES

(-3 . "%p")
"=%="31)))

At the appropriate time, Emacs uses the run-hooks function to run particular hooks. This
function calls the hook functions you have added with add-hooks.

run-hooks &rest hookvar Function
This function takes one or more hook names as arguments and runs each one in turn.
Each hookvar argument should be a symbol that is a hook variable. These arguments

are processed in the order specified.

If a hook variable has a non-nil value, that value may be a function or a list of
functions. If the value is a function (either a lambda expression or a symbol with a
function definition), it is called. If it is a list, the elements are called, in order. The

hook functions are called with no arguments.

For example:

(run-hooks ’emacs-lisp-mode-hook)

Major mode functions use this function to call any hooks defined by the user.

374 GNU Emacs Lisp Reference Manual

add-hook hook function &optional append Function
This function is the handy way to add function function to hook variable hook. For

example,

(add-hook ’text-mode-hook ’my-text-hook-function)
adds my-text-hook-function to the hook called text-mode-hook.

It is best to design your hook functions so that the order in which they are executed

” However, the

does not matter. Any dependence on the order is “asking for trouble.
order is predictable: normally, function goes at the front of the hook list, so it will be

executed first (barring another add-hook call).

If the optional argument append is non-nil, the new hook function goes at the end of
the hook list and will be executed last.

Chapter 21: Documentation 375

21 Documentation

GNU Emacs Lisp has convenient on-line help facilities, most of which derive their information
from the documentation strings associated with functions and variables. This chapter describes
how to write good documentation strings for your Lisp programs, as well as how to write programs
to access documentation.

Note that the documentation strings for Emacs are not the same thing as the Emacs manual.
Manuals have their own source files, written in the Texinfo language; documentation strings are
specified in the definitions of the functions and variables they apply to. A collection of documen-
tation strings is not sufficient as a manual because a good manual is not organized in that fashion;
it is organized in terms of topics of discussion.

21.1 Documentation Basics

A documentation string is written using the Lisp syntax for strings, with double-quote characters
surrounding the text of the string. This is because it really is a Lisp string object. The string serves
as documentation when it is written in the proper place in the definition of a function or variable.
In a function definition, the documentation string follows the argument list. In a variable definition,

the documentation string follows the initial value of the variable.

When you write a documentation string, make the first line a complete sentence (or two complete
sentences) since some commands, such as apropos, print only the first line of a multi-line documen-
tation string. Also, you should not indent the second line of a documentation string, if you have one,
because that looks odd when you use C-h f (describe-function) or C-h v (describe-variable).

Documentation strings may contain several special substrings, which stand for key bindings to be
looked up in the current keymaps when the documentation is displayed. This allows documentation
strings to refer to the keys for related commands and be accurate even when a user rearranges the
key bindings. (See Section 21.2 [Accessing Documentation|, page 376.)

Within the Lisp world, a documentation string is kept with the function or variable that it
describes:

e The documentation for a function is stored in the function definition itself (see Section 11.2

[Lambda Expressions|, page 174). The function documentation knows how to extract it.

376 GNU Emacs Lisp Reference Manual

e The documentation for a variable is stored on the variable’s property list under the prop-
erty name variable-documentation. The function documentation-property knows how to
extract it.

However, to save space, the documentation for preloaded functions and variables (includ-
ing primitive functions and autoloaded functions) are stored in the ‘emacs/etc/DOC-version’
file. Both the documentation and the documentation-property functions know how to access
‘emacs/etc/DOC-version’, and the process is transparent to the user. In this case, the documen-
tation string is replaced with an integer offset into the ‘emacs/etc/DOC-version’ file. Keeping
the documentation strings out of the Emacs core image saves a significant amount of space. See
Section B.1 [Building Emacs], page 693.

For information on the uses of documentation strings, see section “Help” in The GNU Emacs
Manual.

The ‘emacs/etc’ directory contains two utilities that you can use to print nice-looking hardcopy
for the file ‘emacs/etc/DOC-version’. These are ‘sorted-doc.c’ and ‘digest-doc.c’.

21.2 Access to Documentation Strings

documentation-property symbol property &optional verbatim Function
This function returns the documentation string that is recorded symbol’s property list
under property property. This uses the function get, but does more than that: it
also retrieves the string from the file ‘emacs/etc/DOC-version’ if necessary, and runs
substitute-command-keys to substitute the actual (current) key bindings.

If verbatim is non-nil, that inhibits running substitute-command-keys. (The verba-
tim argument exists only as of Emacs 19.)

(documentation-property ’command-line-processed
’variable-documentation)
= "t once command line has been processed"
(symbol-plist ’command-line-processed)
= (variable-documentation 188902)

Chapter 21: Documentation 377

documentation function &optional verbatim Function
This function returns the documentation string of function. If the documentation string
is stored in the ‘emacs/etc/DOC-version’ file, this function will access it there.

In addition, documentation runs substitute-command-keys on the resulting string,
so the value contains the actual (current) key bindings. (This is not done if verbatim
is non-nil; the verbatim argument exists only as of Emacs 19.)

The function documentation signals a void-function error unless function has a
function definition. However, function does not need to have a documentation string.
If there is no documentation string, documentation returns nil.

Here is an example of using the two functions, documentation and documentation-property,
to display the documentation strings for several symbols in a ‘*Help#*’ buffer.

(defun describe-symbols (pattern)
"Describe the Emacs Lisp symbols matching PATTERN.
All symbols that have PATTERN in their name are described
in the ‘*Helpx’ buffer."
(interactive "sDescribe symbols matching: ")
(let ((describe-func
(function
(lambda (s)
;3 Print description of symbol.
(if (fboundp s) ; It is a function.
(princ
(format "%s\t%s\n%s\n\n" s
(if (commandp s)
(let ((keys (where-is-internal s)))
(if keys
(concat
"Keys: "
(mapconcat ’key-description
keys " "))
"Keys: none"))

"Function")

378 GNU Emacs Lisp Reference Manual

(or (documentation s)
"not documented"))))

(if (boundp s) ; It is a variable.
(princ
(format "%s\t%s\n%s\n\n" s
(if (user-variable-p s)
"Option " "Variable")
(or (documentation-property
s ’variable-documentation)
"not documented")))))))
sym-list)

;3 Build a list of symbols that match pattern.
(mapatoms (function
(lambda (sym)
(if (string-match pattern (symbol-name sym))
(setq sym-list (cons sym sym-list))))))

; ; Display the data.

(with-output-to-temp-buffer "xHelp*"
(mapcar describe-func (sort sym-list ’string<))
(print-help-return-message))))

The describe-symbols function works like apropos, but provides more information.

(describe-symbols "goal")

—————————— Buffer: *Help* --——------
goal-column Option

*Semipermanent goal column for vertical motion, as set by C-x C-n, or nil.

set-goal-column Command: C-x C-n

Set the current horizontal position as a goal for C-n and C-p.
Those commands will move to this position in the line moved to
rather than trying to keep the same horizontal position.

With a non-nil argument, clears out the goal column

so that C-n and C-p resume vertical motion.

The goal column is stored in the variable ‘goal-column’.

Chapter 21: Documentation 379

temporary-goal-column Variable

Current goal column for vertical motion.

It is the column where point was

at the start of current run of vertical motion commands.

When the ‘track-eol’ feature is doing its job, the value is 9999.
—————————— Buffer: *Help* ---——--——-

Snarf-documentation filename Function
This function is used only during Emacs initialization, just before the runnable Emacs is
dumped. It finds the file offsets of the documentation strings stored in the file filename,
and records them in the in-core function definitions and variable property lists in place
of the actual strings. See Section B.1 [Building Emacs], page 693.

Emacs finds the file filename in the ‘emacs/etc’ directory. When the dumped Emacs
is later executed, the same file is found in the directory data-directory. Usually

filename is "DOC-version".

data-directory Variable
This variable holds the name of the directory in which Emacs finds certain data files
that come with Emacs or are built as part of building Emacs. (In older Emacs versions,

this directory was the same as exec-directory.)

21.3 Substituting Key Bindings in Documentation

This function makes it possible for you to write a documentation string that enables a user
to display information about the current, actual key bindings. if you call documentation with
non-nil verbatim, you might later call this function to do the substitution that you prevented
documentation from doing.

substitute-command-keys string Function
This function returns string with certain special substrings replaced by the actual
(current) key bindings. This permits the documentation to be displayed with accurate
information about key bindings. (The key bindings may be changed by the user between
the time Emacs is built and the time that the documentation is asked for.)

This table lists the forms of the special substrings and what they are replaced with:

380 GNU Emacs Lisp Reference Manual

\ [command]
is replaced either by a keystroke sequence that will invoke command, or by
‘M-x command’ if command is not bound to any key sequence.

\{mapvar}
is replaced by a summary of the value of mapvar, taken as a keymap. (The
summary is made by describe-bindings.)

\<mapvar>
makes this call to substitute-command-keys use the value of mapvar as
the keymap for future ‘\ [command]’ substrings. This special string does
not produce any replacement text itself; it only affects the replacements

done later.

Please note: each ‘\’ must be doubled when written in a string in Emacs Lisp.

Here are examples of the special substrings:

(substitute-command-keys
"To abort recursive edit, type: \\[abort-recursive-edit]")

= "To abort recursive edit, type: C-]1"

(substitute-command-keys
"The keys that are defined for the minibuffer here are:
\\{minibuffer-local-must-match-map}")

= "The keys that are defined for the minibuffer here are:

7 minibuffer-completion-help
SPC minibuffer-complete-word
TAB minibuffer-complete

LFD minibuffer-complete-and-exit
RET minibuffer-complete-and-exit
C-g abort-recursive-edit

(substitute-command-keys
"To abort a recursive edit from the minibuffer, type\
\\<minibuffer-local-must-match-map>\\ [abort-recursive-edit].")

= "To abort a recursive edit from the minibuffer, type C-g."

Chapter 21: Documentation 381

21.4 Describing Characters for Help Messages

These functions convert events, key sequences or characters to textual descriptions. These
descriptions are useful for including arbitrary text characters or key sequences in messages, because
they convert non-printing characters to sequences of printing characters. The description of a
printing character is the character itself.

key-description sequence Function
This function returns a string containing the Emacs standard notation for the input
events in sequence. The argument sequence may be a string, vector or list. See Sec-
tion 18.5 [Input Events|, page 299, for more information about valid events. See also
the examples for single-key-description, below.

single-key-description event Function
This function returns a string describing event in the standard Emacs notation for
keyboard input. A normal printing character is represented by itself, but a control
character turns into a string starting with ‘C-’, a meta character turns into a string
starting with ‘M-’, and space, linefeed, etc. are transformed to ‘SPC’, ‘LFD’, etc. A
function key is represented by its name. An event which is a list is represented by the
name of the symbol in the CAR of the list.

(single-key-description ?\C-x)

= "C-x"
(key-description "\C-x \M-y \n \t \r \f123")

= "C-x SPC M-y SPC LFD SPC TAB SPC RET SPC C-1 1 2 3"
(single-key-description ’C-mouse-1)

= "C-mouse-1"

text-char-description character Function
This function returns a string describing character in the standard Emacs notation
for characters that appear in text—Ilike single-key-description, except that control
characters are represented with a leading caret (which is how control characters in
Emacs buffers are usually displayed).

(text-char-description 7\C-c)
j n= C n

(text-char-description ?\M-m)
j n M_m n

382 GNU Emacs Lisp Reference Manual

(text-char-description 7\C-\M-m)
j IIM_‘MII

21.5 Help Functions

Emacs provides a variety of on-line help functions, all accessible to the user as subcommands of
the prefix C-h. For more information about them, see section “Help” in The GNU Emacs Manual.

Here we describe some program-level interfaces to the same information.

apropos regexp &optional do-all predicate Command
This function finds all symbols whose names contain a match for the regular expression
regexp, and returns a list of them. It also displays the symbols in a buffer named
‘xHelp*’, each with a one-line description.

If do-all is non-nil, then apropos also shows key bindings for the functions that are

found.

If predicate is non-nil, it should be a function to be called on each symbol that has
matched regexp. Only symbols for which predicate returns a non-nil value are listed

or displayed.

In the first of the following examples, apropos finds all the symbols with names con-
taining ‘exec’. In the second example, it finds and returns only those symbols that are
also commands. (We don’t show the output that results in the ‘*Helpx’ buffer.)

(apropos "exec")
= (Buffer-menu-execute command-execute exec-directory
exec-path execute-extended-command execute-kbd-macro
executing-kbd-macro executing-macro)
(apropos "exec" nil ’commandp)
= (Buffer-menu-execute execute-extended-command)

The command C-h a (command-apropos) calls apropos, but specifies a predicate to
restrict the output to symbols that are commands. The call to apropos looks like this:

(apropos string t ’commandp)

Chapter 21: Documentation 383

super-apropos regexp &optional do-all Command
This function differs from apropos in that it searches documentation strings as well as
symbol names for matches for regexp. By default, it searches only the documentation
strings, and only those of functions and variables that are included in Emacs when it
is dumped. If do-all is non-nil, it scans the names and documentation strings of all
functions and variables.

help-command Command
This command is not a function, but rather a symbol which is equivalent to the keymap
called help-map. It is defined in ‘help.el’ as follows:

(define-key global-map "\C-h" ’help-command)
(fset ’help-command help-map)

help-map Variable
The value of this variable is a local keymap for characters following the Help key, C-h.

print-help-return-message &optional function Function
This function builds a string which is a message explaining how to restore the previous
state of the windows after a help command. After building the message, it applies
function to it if function is non-nil. Otherwise it calls message to display it in the
echo area.

This function expects to be called inside a with-output-to-temp-buffer special form,
and expects standard-output to have the value bound by that special form. For
an example of its use, see the example in the section describing the documentation
function (see Section 21.2 [Accessing Documentation], page 376).

The constructed message will have one of the forms shown below.

—————————— Echo Area ———---—-———-
Type C-x 1 to remove help window.
—————————— Echo Area ----------

—————————— Echo Area ----------

Type C-x 4 b RET to restore old contents of help window.
—————————— Echo Area ———---———-

384 GNU Emacs Lisp Reference Manual

help-char Variable

The value of this variable is the character that Emacs recognizes as meaning Help.
When Emacs reads this character (which is usually 8, the value of C-h), Emacs evaluates
(eval help-form), and displays the result if it is a string. If help-form’s value is nil,

this character is read normally.

help-form Variable
The value of this variable is a form to execute when the character help-char is read.

If the form returns a string, that string is displayed. If help-form is nil, then the help

character is not recognized.

Entry to the minibuffer binds this variable to the value of minibuffer-help-form.

The following two functions are found in the library ‘helper’. They are for modes that want to
provide help without relinquishing control, such as the “electric” modes. You must load that library
with (require ’helper) in order to use them. Their names begin with ‘Helper’ to distinguish

them from the ordinary help functions.

Helper-describe-bindings Command
This command pops up a window displaying a help buffer containing a listing of all
of the key bindings from both the local and global keymaps. It works by calling

describe-bindings.

Helper-help Command
This command provides help for the current mode. It prompts the user in the minibuffer

with the message ‘Help (Type 7 for further options)’, and then provides assistance
in finding out what the key bindings are, and what the mode is intended for. It returns

nil.

This can be customized by changing the map Helper-help-map.

Chapter 22: Files 385

22 Files

In Emacs, you can find, create, view, save, and otherwise work with files and file directories. This
chapter describes most of the file-related functions of Emacs Lisp, but a few others are described
in Chapter 24 [Buffers], page 429, and those related to backups and auto-saving are described in
Chapter 23 [Backups and Auto-Saving], page 417.

22.1 Visiting Files

Visiting a file means reading a file into a buffer. Once this is done, we say that the buffer is
visiting that file, and call the file “the visited file” of the buffer.

A file and a buffer are two different things. A file is information recorded permanently in the
computer (unless you delete it). A buffer, on the other hand, is information inside of Emacs that
will vanish at the end of the editing session (or when you kill the buffer). Usually, a buffer contains
information that you have copied from a file; then we say the buffer is visiting that file. The copy
in the buffer is what you modify with editing commands. Such changes to the buffer do not change
the file; therefore, to make the changes permanent, you must save the buffer, which means copying
the altered buffer contents back into the file.

In spite of the distinction between files and buffers, people often refer to a file when they mean a

7

buffer and vice-versa. Indeed, we say, “I am editing a file,” rather than, “I am editing a buffer which
I will soon save as a file of the same name.” Humans do not usually need to make the distinction
explicit. When dealing with a computer program, however, it is good to keep the distinction in

mind.

22.1.1 Functions for Visiting Files

This section describes the functions normally used to visit files. For historical reasons, these
functions have names starting with ‘find-’ rather than ‘visit-’. See Section 24.3 [Buffer File
Name], page 431, for functions and variables that access the visited file name of a buffer or that
find an existing buffer by its visited file name.

find-file filename Command
This function reads the file filename into a buffer and displays that buffer in the selected
window so that the user can edit it.

386 GNU Emacs Lisp Reference Manual

The body of the find-file function is very simple and looks like this:

(switch-to-buffer (find-file-noselect filename))

(See switch-to-buffer in Section 25.7 [Displaying Buffers], page 455.)

When find-file is called interactively, it prompts for filename in the minibuffer.

find-file-noselect filename Function
This function is the guts of all the file-visiting functions. It reads a file into a buffer
and returns the buffer. You may then make the buffer current or display it in a window
if you wish, but this function does not do so.

If no buffer is currently visiting filename, then one is created and the file is visited. If
filename does not exist, the buffer is left empty, and find-file-noselect displays the
message ‘New file’ in the echo area.

If a buffer is already visiting filename, then the find-file-noselect function uses
that buffer rather than creating a new one. However, it does verify that the file has not
changed since it was last visited or saved in that buffer. If the file has changed, then
this function asks the user whether to reread the changed file. If the user says ‘yes’,

any changes previously made in the buffer are lost.

The find-file-noselect function calls after-find-file after the file is read in (see
Section 22.1.2 [Subroutines of Visiting], page 388). The after-find-file function sets
the buffer major mode, parses local variables, warns the user if there exists an auto-
save file more recent than the file just visited, and finishes by running the functions in
find-file-hooks.

The find-file-noselect function returns the buffer that is visiting the file filename.

(find-file-noselect "/etc/fstab")
= #<buffer fstab>

find-alternate-file filename Command
This function reads the file filename into a buffer and selects it, killing the buffer
current at the time the command is run. It is useful if you have visited the wrong file

Chapter 22: Files 387

by mistake, so that you can get rid of the buffer that you did not want to create, at

the same time as you visit the file you intended.

When this function is called interactively, it prompts for filename.

find-file-other-window filename Command
This function visits the file filename and displays its buffer in a window other than the
selected window. It may use another existing window or split a window; see Section 25.7
[Displaying Buffers], page 455.

When this function is called interactively, it prompts for filename.

find-file-read-only filename Command
This function visits the file named filename and selects its buffer, just like find-file,
but it marks the buffer as read-only. See Section 24.6 [Read Only Buffers], page 436,
for related functions and variables.

When this function is called interactively, it prompts for filename.

view-file filename Command
This function views filename in View mode, returning to the previous buffer when done.
View mode is a mode that allows you to skim rapidly through the file but does not let
you modify it.

After loading the file, view-file runs the normal hook view-hook using run-hooks.
See Section 20.4 [Hooks|, page 371.

When this function is called interactively, it prompts for filename.

find-file-hooks Variable
The value of this variable is a list of functions to be called after a file is visited. The
file’s local-variables specification (if any) will have been processed before the hooks are
run. The buffer visiting the file is current when the hook functions are run.

This variable could be a normal hook, but we think that renaming it would not be
advisable.

388 GNU Emacs Lisp Reference Manual

find-file-not-found-hooks Variable
The value of this variable is a list of functions to be called when find-file or find-
file-noselect is passed a nonexistent filename. These functions are called as soon as
the error is detected. buffer-file-name is already set up. The functions are called in

the order given, until one of them returns non-nil.

This is not a normal hook because the values of the functions are used and they may

not all be run.

22.1.2 Subroutines of Visiting

The find-file-noselect function uses the create-file-buffer and after-find-file func-

tions as subroutines. Sometimes it is useful to call them directly.

create-file-buffer filename Function
This function creates a suitably named buffer for visiting filename, and returns it. The
string filename (sans directory) is used unchanged if that name is free; otherwise, a
string such as ‘<2>’ is appended to get an unused name. See also Section 24.8 [Creating
Buffers], page 439.

Please note: create-file-buffer does not associate the new buffer with a file and

does not make it the current buffer.

(create-file-buffer "foo")
= #<buffer foo>
(create-file-buffer "foo")

= #<buffer foo<2>>
(create-file-buffer "foo")
= #<buffer foo<3>>

This function is used by find-file-noselect. It uses generate-new-buffer (see
Section 24.8 [Creating Buffers|, page 439).

after-find-file &optional error warn Function
This function is called by find-file-noselect and by the default revert function (see
Section 23.3 [Reverting], page 426). It sets the buffer major mode, and parses local
variables (see Section 20.1.3 [Auto Major Mode|, page 360).

Chapter 22: Files 389

If there was an error in opening the file, the calling function should pass error a non-nil
value. In that case, after-find-file issues a warning: ‘(New File)’. Note that, for
serious errors, you would not even call after-find-file. Only “file not found” errors

get here with a non-nil error.

If warn is non-nil, then this function issues a warning if an auto-save file exists and is

more recent than the visited file.

The last thing after-find-file does is call all the functions in find-file-hooks.

22.2 Saving Buffers

When you edit a file in Emacs, you are actually working on a buffer that is visiting that file—
that is, the contents of the file are copied into the buffer and the copy is what you edit. Changes
to the buffer do not change the file until you save the buffer, which means copying the contents of
the buffer into the file.

save-buffer &optional backup-option Command
This function saves the contents of the current buffer in its visited file if the buffer has

been modified since it was last visited or saved. Otherwise it does nothing.

save-buffer is responsible for making backup files. Normally, backup-option is nil,
and save-buffer makes a backup file only if this is the first save or if the buffer was
previously modified. Other values for backup-option request the making of backup files

in other circumstances:

e With an argument of 4 or 64, reflecting 1 or 3 C-u’s, the save-buffer function

marks this version of the file to be backed up when the buffer is next saved.

e With an argument of 16 or 64, reflecting 2 or 3 C-u’s, the save-buffer function
unconditionally backs up the previous version of the file before saving it.

save-some-buffers &optional save-silently-p exiting Command
This command saves some modified file-visiting buffers. Normally it asks the user
about each buffer. But if save-silently-p is non-nil, it saves all the file-visiting buffers

without querying the user.

390 GNU Emacs Lisp Reference Manual

The optional exiting argument, if non-nil, requests this function to offer also to save
certain other buffers that are not visiting files. These are buffers that have a non-nil
local value of buffer-offer-save. (A user who says yes to saving one of these is
asked to specify a file name to use.) The save-buffers-kill-emacs function passes

a non-nil value for this argument.

buffer-offer-save Variable
When this variable is non-nil in a buffer, Emacs offers to save the buffer on exit even
if the buffer is not visiting a file. The variable is automatically local in all buffers.
Normally, Mail mode (used for editing outgoing mail) sets this to t.

write-file filename Command
This function writes the current buffer into file filename, makes the buffer visit that
file, and marks it not modified. The buffer is renamed to correspond to filename unless

that name is already in use.

write-file-hooks Variable
The value of this variable is a list of functions to be called before writing out a buffer
to its visited file. If one of them returns non-nil, the file is considered already written
and the rest of the functions are not called, nor is the usual code for writing the file

executed.

If a function in write-file-hooks returns non-nil, it is responsible for making a
backup file (if that is appropriate). To do so, execute the following code:

(or buffer-backed-up (backup-buffer))

You might wish to save the file modes value returned by backup-buffer and use that
to set the mode bits of the file that you write. This is what basic-save-buffer does
when it writes a file in the usual way.

Here is an example showing how to add an element to write-file-hooks but avoid
adding it twice:

(or (memq ’my-write-file-hook write-file-hooks)
(setq write-file-hooks
(cons
'my-write-file-hook write-file-hooks)))

Chapter 22: Files 391

local-write-file-hooks Variable
This works just like write-file-hooks, but it is intended to be made local to particular
buffers. It’s not a good idea to make write-file-hooks local to a buffer—use this
variable instead.

The variable is marked as a permanent local, so that changing the major mode does
not alter a buffer-local value. This is convenient for packages that read “file” contents
in special ways, and set up hooks to save the data in a corresponding way.

write-contents-hooks Variable
This works just like write-file-hooks, but it is intended to be used for hooks that
pertain to the contents of the file, as opposed to hooks that pertain to where the file

came from.

after-save-hook Variable
This normal hook runs after a buffer has been saved in its visited file.

file-precious-flag Variable
If this variable is non-nil, then save-buffer protects against I/O errors while saving
by writing the new file to a temporary name instead of the name it is supposed to have,
and then renaming it to the intended name after it is clear there are no errors. This

procedure prevents problems such as a lack of disk space from resulting in an invalid

file.
(This feature worked differently in older Emacs versions.)

Some modes set this non-nil locally in particular buffers.

require-final-newline User Option
This variable determines whether files may be written out that do not end with a
newline. If the value of the variable is t, then Emacs silently puts a newline at the end
of the file whenever the buffer being saved does not already end in one. If the value of
the variable is non-nil, but not t, then Emacs asks the user whether to add a newline

each time the case arises.

If the value of the variable is nil, then Emacs doesn’t add newlines at all. nil is the
default value, but a few major modes set it to t in particular buffers.

392 GNU Emacs Lisp Reference Manual

22.3 Reading from Files

You can copy a file from the disk and insert it into a buffer using the insert-file-contents
function. Don’t use the user-level command insert-file in a Lisp program, as that sets the mark.

insert-file-contents filename &optional visit Function
This function inserts the contents of file filename into the current buffer after point. It
returns a list of the absolute file name and the length of the data inserted. An error is
signaled if filename is not the name of a file that can be read.

If visit is non-nil, it also marks the buffer as unmodified and sets up various fields in
the buffer so that it is visiting the file filename: these include the buffer’s visited file
name and its last save file modtime. This feature is used by find-file-noselect and
you should probably not use it yourself.

If you want to pass a file name to another process so that another program can read the file,
see the function file-local-copy in Section 22.11 [Magic File Names], page 414.

22.4 Writing to Files

You can write the contents of a buffer, or part of a buffer, directly to a file on disk using the
append-to-file and write-region functions. Don’t use these functions to write to files that are
being visited; that could cause confusion in the mechanisms for visiting.

append-to-file start end filename Command
This function appends the contents of the region delimited by start and end in the
current buffer to the end of file filename. If that file does not exist, it is created. This
function returns nil.

An error is signaled if filename specifies a nonwritable file, or a nonexistent file in a
directory where files cannot be created.

write-region start end filename &optional append visit Command
This function writes the region (of the current buffer) delimited by start and end into
the file specified by filename.

Chapter 22: Files 393

If start is a string, then write-region writes or appends that string, rather than text
from the buffer.

If append is non-nil, then the region is appended to the existing file contents (if any).

If visit is t, then Emacs establishes an association between the buffer and the file: the
buffer is then visiting that file. It also sets the last file modification time for the current
buffer to filename’s modtime, and marks the buffer as not modified. This feature is
used by write-file and you should probably not use it yourself.

If visit is a string, it specifies the file name to visit. This way, you can write the data
to one file (filename) while recording the buffer as visiting another file (visit). The
argument visit is used in the echo area message and also for file locking; visit is stored
in buffer-file-name. This feature is used to implement file-precious-flag; don'’t
use it yourself unless you really know what you’re doing.

Normally, write-region displays a message ‘Wrote file filename’ in the echo area. If
visit is neither t nor nil nor a string, then this message is inhibited. This feature is
useful for programs that use files for internal purposes, files which the user does not
need to know about.

22.5 File Locks

When two users edit the same file at the same time, they are likely to interfere with each other.
Emacs tries to prevent this situation from arising by recording a file lock when a file is being
modified. Emacs can then detect the first attempt to modify a buffer visiting a file that is locked
by another Emacs job, and ask the user what to do.

File locks do not work properly when multiple machines can share file systems, such as with
NFS. Perhaps a better file locking system will be implemented in the future. When file locks do
not work, it is possible for two users to make changes simultaneously, but Emacs can still warn the
user who saves second. Also, the detection of modification of a buffer visiting a file changed on disk
catches some cases of simultaneous editing; see Section 24.5 [Modification Time], page 435.

394 GNU Emacs Lisp Reference Manual

file-locked-p filename Function
This function returns nil if the file filename is not locked by this Emacs process. It
returns t if it is locked by this Emacs, and it returns the name of the user who has
locked it if it is locked by someone else.

(file-locked-p "foo")
= nil

lock-buffer &optional filename Function
This function locks the file filename, if the current buffer is modified. The argument
filename defaults to the current buffer’s visited file. Nothing is done if the current
buffer is not visiting a file, or is not modified.

unlock-buffer Function
This function unlocks the file being visited in the current buffer, if the buffer is modified.
If the buffer is not modified, then the file should not be locked, so this function does

nothing. It also does nothing if the current buffer is not visiting a file.

ask-user-about-lock file other-user Function
This function is called when the user tries to modify file, but it is locked by another
user name other-user. The value it returns tells Emacs what to do next:

e A value of t tells Emacs to grab the lock on the file. Then this user may edit the
file and other-user loses the lock.

e A value of nil tells Emacs to ignore the lock and let this user edit the file anyway.

e This function may instead signal a file-locked error, in which case the change

to the buffer which the user was about to make does not take place.

The error message for this error looks like this:
File is locked: file other-user

where file is the name of the file and other-user is the name of the user who has

locked the file.

The default definition of this function asks the user to choose what to do. If you wish,
you can replace the ask-user-about-1lock function with your own version that decides
in another way. The code for its usual definition is in ‘userlock.el’.

Chapter 22: Files 395

22.6 Information about Files

The functions described in this section are similar in as much as they all operate on strings which
are interpreted as file names. All have names that begin with the word ‘file’. These functions all
return information about actual files or directories, so their arguments must all exist as actual files

or directories unless otherwise noted.

Most of the file-oriented functions take a single argument, filename, which must be a string.
The file name is expanded using expand-file-name, so ‘~’ is handled correctly, as are relative file
names (including ‘. ./’). Environment variable substitutions, such as ‘$HOME’, are not recognized

by these functions. See Section 22.10.4 [File Name Expansion], page 410.

22.6.1 Testing Accessibility

These functions test for permission to access a file in specific ways.

file-exists-p filename Function
This function returns t if a file named filename appears to exist. This does not mean
you can necessarily read the file, only that you can find out its attributes. (On Unix, this
is true if the file exists and you have execute permission on the containing directories,
regardless of the protection of the file itself.)

If the file does not exist, or if fascist access control policies prevent you from finding

the attributes of the file, this function returns nil.

file-readable-p filename Function
This function returns t if a file named filename exists and you can read it. It returns

nil otherwise.

(file-readable-p "files.texi")
=t

(file-exists-p "/usr/spool/mqueue")
=t

(file-readable-p "/usr/spool/mqueue")
= nil

396 GNU Emacs Lisp Reference Manual

file-executable-p filename Function
This function returns t if a file named filename exists and you can execute it. It returns
nil otherwise. If the file is a directory, execute permission means you can access files
inside the directory.

file-writable-p filename Function
This function returns t if filename can be written or created by you. It is writable if
the file exists and you can write it. It is creatable if the file does not exist, but the
specified directory does exist and you can write in that directory. file-writable-p

returns nil otherwise.

In the third example below, ‘foo’ is not writable because the parent directory does not

exist, even though the user could create it.

(file-writable-p "“rms/foo")
=t

(file-writable-p "/foo")
= nil

(file-writable-p "“rms/no-such-dir/foo")
= nil

file-accessible-directory-p dirname Function
This function returns t if you have permission to open existing files in directory
dirname; otherwise (and if there is no such directory), it returns nil. The value
of dirname may be either a directory name or the file name of a directory.

Example: after the following,

(file-accessible-directory-p "/foo")
= nil

we can deduce that any attempt to read a file in ‘/foo/’ will give an error.

file-newer-than-file-p filenamel filename2 Function
This functions returns t if the file filenamel is newer than file filename2. If filenamel

does not exist, it returns nil. If filename2 does not exist, it returns t.

Chapter 22: Files 397

You can use file-attributes to get a file’s last modification time as a list of two
numbers. See Section 22.6.4 [File Attributes|, page 398.

In the following example, assume that the file ‘aug-19’ was written on the 19th, and
‘aug-20’ was written on the 20th. The file ‘no-file’ doesn’t exist at all.

(file-newer-than-file-p "aug-19" "aug-20")
= nil

(file-newer-than-file-p "aug-20" "aug-19")
=t

(file-newer-than-file-p "aug-19" "no-file")
=t

(file-newer-than-file-p "no-file" "aug-19")
= nil

22.6.2 Distinguishing Kinds of Files

This section describes how to distinguish directories and symbolic links from ordinary files.

file-symlink-p filename Function
If filename is a symbolic link, the file-symlink-p function returns the file name to
which it is linked. This may be the name of a text file, a directory, or even another

symbolic link, or of no file at all.

If filename is not a symbolic link (or there is no such file), file-symlink-p returns

nil.

(file-symlink-p "foo")
= nil
(file-symlink-p "sym-link")
= "foo"
(file-symlink-p "sym-link2")
= "sym-link"
(file-symlink-p "/bin")
= "/pub/bin"

398 GNU Emacs Lisp Reference Manual

file-directory-p filename Function
This function returns t if filename is the name of an existing directory, nil otherwise.

(file-directory-p "“rms")
=t

(file-directory-p "“rms/lewis/files.texi")
= nil

(file-directory-p "“rms/lewis/no-such-file")
= nil

(file-directory-p "$HOME")
= nil

(file-directory-p

(substitute-in-file-name "$HOME"))

=t

22.6.3 Truenames

The truename of a file is the name that you get by following symbolic links until none remain,
then expanding to get rid of *.” and ‘..’ as components. Strictly speaking, a file need not have a
unique truename; the number of distinct truenames a file has is equal to the number of hard links
to the file. However, truenames are useful because they eliminate symbolic links as a cause of name

variation.

file-truename filename Function
The function file-truename returns the true name of the file filename. This is the
name that you get by following symbolic links until none remain. The argument must

be an absolute file name.

See Section 24.3 [Buffer File Name|, page 431, for related information.

22.6.4 Other Information about Files

This section describes the functions for getting detailed information about a file, other than its
contents. This information includes the mode bits that control access permission, the owner and
group numbers, the number of names, the inode number, the size, and the times of access and

modification.

Chapter 22: Files 399

file-modes filename Function
This function returns the mode bits of filename, as an integer. The mode bits are also
called the file permissions, and they specify access control in the usual Unix fashion. If
the low-order bit is 1, then the file is executable by all users, if the second lowest-order
bit is 1, then the file is writable by all users, etc.

The highest value returnable is 4095 (7777 octal), meaning that everyone has read,
write, and execute permission, that the SUID bit is set for both others and group, and
that the sticky bit is set.

(file-modes "7/junk/diffs")

= 492 ; Decimal integer.
(format "%o" 492)

= 754 ; Convert to octal.
(set-file-modes "~/junk/diffs" 438)

= nil
(format "%o" 438)

= 666 ; Convert to octal.

% 1s -1 diffs
-rw-rw-rw—- 1 lewis O 3063 Oct 30 16:00 diffs

file-nlinks filename Function
This functions returns the number of names (i.e., hard links) that file filename has. If
the file does not exist, then this function returns nil. Note that symbolic links have
no effect on this function, because they are not considered to be names of the files they
link to.

% 1ls -1 foox*

“IrW-rw-rw- 2 rms 4 Aug 19 01:27 foo
“rW-rw-rw- 2 rms 4 Aug 19 01:27 fool
(file-nlinks "foo")
= 2
(file-nlinks "doesnt-exist")
= nil
file-attributes filename Function

This function returns a list of attributes of file filename. If the specified file cannot be
opened, it returns nil.

400 GNU Emacs Lisp Reference Manual

The elements of the list, in order, are:

0. t for a directory, a string for a symbolic link (the name linked to), or nil for a
text file.

1. The number of names the file has. Alternate names, also known as hard links, can
be created by using the add-name-to-file function (see Section 22.9 [Changing
File Attributes], page 403).

2. The file’s UID.
3. The file’s GID.

4. The time of last access, as a list of two integers. The first integer has the high-
order 16 bits of time, the second has the low 16 bits. (This is similar to the value
of current-time; see Section 34.5 [Time of Day], page 635.)

The time of last modification as a list of two integers (as above).
The time of last status change as a list of two integers (as above).
The size of the file in bytes.

The file’s modes, as a string of ten letters or dashes as in ‘1s 1.

© »®» N o

t if the file’s GID would change if file were deleted and recreated; nil otherwise.
10. The file’s inode number.

11. The file system number of the file system that the file is in. This element together
with the file’s inode number, give enough information to distinguish any two files

on the system—mno two files can have the same values for both of these numbers.

For example, here are the file attributes for ‘files.texi’:

(file-attributes "files.texi")

= (nil
1
2235
75
(8489 20284)
(8489 20284)
(8489 20285)
14906
"-rw-rw-rw-"
nil
129500
-32252)

Chapter 22: Files 401

and here is how the result is interpreted:

nil is neither a directory nor a symbolic link.

1 has only one name (the name ‘files.texi’ in the current default direc-
tory).

2235 is owned by the user with UID 2235.

75 is in the group with GID 75.

(8489 20284)
was last accessed on Aug 19 00:09. Unfortunately, you cannot convert this
number into a time string in Emacs.

(8489 20284)
was last modified on Aug 19 00:09.

(8489 20285)
last had its inode changed on Aug 19 00:09.

14906 is 14906 characters long.

"—rw-rw-rw-"

has a mode of read and write access for the owner, group, and world.
nil would retain the same GID if it were recreated.
129500 has an inode number of 129500.

-32252 is on file system number -32252.

22.7 Contents of Directories

A directory is a kind of file that contains other files entered under various names. Directories

are a feature of the file system.

Emacs can list the names of the files in a directory as a Lisp list, or display the names in a
buffer using the 1s shell command. In the latter case, it can optionally display information about
each file, depending on the value of switches passed to the 1s command.

directory-files directory &optional full-name match-regexp nosort Function
This function returns a list of the names of the files in the directory directory. By
default, the list is in alphabetical order.

402 GNU Emacs Lisp Reference Manual

If full-name is non-nil, the function returns the files’ absolute file names. Otherwise,
it returns just the names relative to the specified directory.

If match-regexp is non-nil, this function returns only those file names that contain
that regular expression—the other file names are discarded from the list.

If nosort is non-nil, that inhibits sorting the list, so you get the file names in no
particular order. Use this if you want the utmost possible speed and don’t care what
order the files are processed in. If the order of processing is visible to the user, then
the user will probably be happier if you do sort the names.

(directory-files ""lewis")
= ("#foo#" "#foo.el#" "." M. . "
"dired-mods.el" "files.texi"
"files.texi."1™")

An error is signaled if directory is not the name of a directory that can be read.

file-name-all-versions file dirname Function
This function returns a list of all versions of the file named file in directory dirname.

insert-directory file switches &optional wildcard full-directory-p Function
This function inserts a directory listing for directory dir, formatted according to
switches. It leaves point after the inserted text.

The argument dir may be either a directory name or a file specification including
wildcard characters. If wildcard is non-nil, that means treat file as a file specification

with wildcards.

If full-directory-p is non-nil, that means file is a directory and switches do not contain

‘d’, so that a full listing is expected.

This function works by running a directory listing program whose name is in the vari-
able insert-directory-program. If wildcard is non-nil, it also runs the shell specified
by shell-file-name, to expand the wildcards.

Chapter 22: Files 403

insert-directory-program Variable
This variable’s value is the program to run to generate a directory listing for the function

insert-directory.

22.8 Creating and Deleting Directories

make-directory dirname Function
This function creates a directory named dirname.

delete-directory dirname Function
This function deletes the directory named dirname. The function delete-file does
not work for files that are directories; you must use delete-directory in that case.

22.9 Changing File Names and Attributes
The functions in this section rename, copy, delete, link, and set the modes of files.

In the functions that have an argument newname, if a file by the name of newname already
exists, the actions taken depend on the value of the argument ok-if-already-exists:

e A file-already-exists error is signaled if ok-if-already-exists is nil.
e Confirmation is requested if ok-if-already-exists is a number.

e No confirmation is requested if ok-if-already-exists is any other value, in which case the old
file is removed.

add-name-to-file oldname newname &optional ok-if-already-exists Function
This function gives the file named oldname the additional name newname. This means
that newname becomes a new “hard link” to oldname.

In the first part of the following example, we list two files, ‘foo’ and ‘foo3’.
% 1ls -1 fox

-rw-rw-rw- 1 rms 29 Aug 18 20:32 foo
-rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

404 GNU Emacs Lisp Reference Manual

Then we evaluate the form (add-name-to-file "~/lewis/foo" "~ /lewis/foo02").
Again we list the files. This shows two names, ‘foo’ and ‘foo2’.

(add-name-to-file "~ /lewis/fool" "~/lewis/foo2")

= nil
% 1s -1 fox
“IW-rw-rw- 2 rms 29 Aug 18 20:32 foo
“IW-Irw-rw- 2 rms 29 Aug 18 20:32 foo2
-rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

Finally, we evaluate the following:

(add-name-to-file "~ /lewis/foo" "~ /lewis/foo3" t)

and list the files again. Now there are three names for one file: ‘foo’, ‘foo02’, and
‘f003’. The old contents of ‘003’ are lost.

(add-name-to-file "~ /lewis/fool" "~/lewis/foo3")

= nil
% 1s -1 fox
-Iw-rw-rw- 3 rms 29 Aug 18 20:32 foo
-rw-rw-rw- 3 rms 29 Aug 18 20:32 foo2
-rw-rw-rw- 3 rms 29 Aug 18 20:32 foo3

This function is meaningless on VMS, where multiple names for one file are not allowed.

See also file-nlinks in Section 22.6.4 [File Attributes], page 398.

rename-file filename newname &optional ok-if-already-exists Command

This command renames the file filename as newname.

If filename has additional names aside from filename, it continues to have those names.
In fact, adding the name newname with add-name-to-file and then deleting filename
has the same effect as renaming, aside from momentary intermediate states.

In an interactive call, this function prompts for filename and newname in the minibuf-

fer; also, it requests confirmation if newname already exists.

Chapter 22: Files 405

copy-file oldname newname &optional ok-if-exists time Command
This command copies the file oldname to newname. An error is signaled if oldname

does not exist.

If time is non-nil, then this functions gives the new file the same last-modified time

that the old one has. (This works on only some operating systems.)

In an interactive call, this function prompts for filename and newname in the minibuf-

fer; also, it requests confirmation if newname already exists.

delete-file filename Command
This command deletes the file filename, like the shell command ‘rm filename’. If the

file has multiple names, it continues to exist under the other names.

A suitable kind of file-error error is signaled if the file does not exist, or is not
deletable. (In Unix, a file is deletable if its directory is writable.)

See also delete-directory in Section 22.8 [Create/Delete Dirs|, page 403.

make-symbolic-link filename newname &optional ok-if-exists Command
This command makes a symbolic link to filename, named newname. This is like the

shell command ‘1n -s filename newname’.

In an interactive call, filename and newname are read in the minibuffer, and ok-if-exists
is set to the numeric prefix argument.

define-logical-name varname string Function
This function defines the logical name name to have the value string. It is available
only on VMS.

set-file-modes filename mode Function

This function sets mode bits of filename to mode (which must be an integer). Only

the 12 low bits of mode are used.

406 GNU Emacs Lisp Reference Manual

set-default-file-modes mode Function
This function sets the default file protection for new files created by Emacs and its
subprocesses. Every file created with Emacs initially has this protection. On Unix, the
default protection is the bitwise complement of the “umask” value.

The argument mode must be an integer. Only the 9 low bits of mode are used.

Saving a modified version of an existing file does not count as creating the file; it does

not change the file’s mode, and does not use the default file protection.

default-file-modes Function

This function returns the current default protection value.

22.10 File Names

Files are generally referred to by their names, in Emacs as elsewhere. File names in Emacs are
represented as strings. The functions that operate on a file all expect a file name argument.

In addition to operating on files themselves, Emacs Lisp programs often need to operate on the
names; i.e., to take them apart and to use part of a name to construct related file names. This

section describes how to manipulate file names.

The functions in this section do not actually access files, so they can operate on file names that
do not refer to an existing file or directory.

On VMS, all these functions understand both VMS file name syntax and Unix syntax. This is
so that all the standard Lisp libraries can specify file names in Unix syntax and work properly on
VMS without change.

22.10.1 File Name Components

The operating system groups files into directories. To specify a file, you must specify the
directory, and the file’s name in that directory. Therefore, a file name in Emacs is considered to
have two main parts: the directory name part, and the nondirectory part (or file name within the
directory). Either part may be empty. Concatenating these two parts reproduces the original file

name.

Chapter 22: Files 407

On Unix, the directory part is everything up to and including the last slash; the nondirectory
part is the rest. The rules in VMS syntax are complicated.

For some purposes, the nondirectory part is further subdivided into the name proper and the
version number. On Unix, only backup files have version numbers in their names; on VMS, every
file has a version number, but most of the time the file name actually used in Emacs omits the

version number. Version numbers are found mostly in directory lists.

file-name-directory filename Function
This function returns the directory part of filename (or nil if filename does not include
a directory part). On Unix, the function returns a string ending in a slash. On VMS,

it returns a string ending in one of the three characters ‘:’, ‘17, or >’.

(file-name-directory "lewis/foo") ; Unix example
= "lewis/"

(file-name-directory "foo") ; Unix example
= nil

(file-name-directory "[X]JFOO.TMP") ; VMS example
: n [X] n

file-name-nondirectory filename Function

This function returns the nondirectory part of filename.

(file-name-nondirectory "lewis/foo")
= "foo"
(file-name-nondirectory "foo")
= "foo"
;3 The following example is accurate only on VMS.
(file-name-nondirectory " [X]F0OO.TMP")
= "FOO.TMP"

file-name-sans-versions filename Function
This function returns filename without any file version numbers, backup version num-

bers, or trailing tildes.

(file—name-sans-versions "“rms/foo.~17")
= "“rms/foo"

408 GNU Emacs Lisp Reference Manual

(file-name-sans-versions "“rms/foo™")

= "“rms/foo"
(file-name-sans-versions "“rms/foo")

= "“rms/foo"
;5 The following example applies to VMS only.
(file-name-sans-versions "foo0;23")

= "foo"

22.10.2 Directory Names

A directory name is the name of a directory. A directory is a kind of file, and it has a file name,
which is related to the directory name but not identical to it. (This is not quite the same as the
usual Unix terminology.) These two different names for the same entity are related by a syntactic
transformation. On Unix, this is simple: a directory name ends in a slash, whereas the directory’s
name as a file lacks that slash. On VMS, the relationship is more complicated.

The difference between a directory name and its name as a file is subtle but crucial. When
an Emacs variable or function argument is described as being a directory name, a file name of a

directory is not acceptable.

These two functions take a single argument, filename, which must be a string. Environment
variable substitutions such as ‘$HOME’, and the symbols ‘*’, and ‘. .’, are not expanded. Use expand-
file-name or substitute-in-file-name for that (see Section 22.10.4 [File Name Expansion],
page 410).

file-name-as-directory filename Function
This function returns a string representing filename in a form that the operating system
will interpret as the name of a directory. In Unix, this means that a slash is appended
to the string. On VMS, the function converts a string of the form ‘[X]Y.DIR.1’ to the
form ‘[X.Y] .

(file-name-as-directory "“rms/lewis")
= "“rms/lewis/"

directory-file-name dirname Function
This function returns a string representing dirname in a form that the operating system
will interpret as the name of a file. On Unix, this means removing a final slash from the
string. On VMS, the function converts a string of the form ‘[X.Y]’ to ‘[X]Y.DIR.1.

Chapter 22: Files 409

(directory-file-name "“lewis/")
= ""lewis"

Directory name abbreviations are useful for directories that are normally accessed through sym-
bolic links. Sometimes the users recognize primarily the link’s name as “the name” of the directory,
and find it annoying to see the directory’s “real” name. If you define the link name as an abbrevi-
ation for the “real” name, Emacs shows users the abbreviation instead.

If you wish to convert a directory name to its abbreviation, use this function:

abbreviate-file-name dirname Function
This function applies abbreviations from directory-abbrev-alist to its argument,

and substitutes ‘=’ for the user’s home directory.

directory-abbrev-alist Variable
The variable directory-abbrev-alist contains an alist of abbreviations to use for file
directories. Each element has the form (from . to), and says to replace from with to
when it appears in a directory name. The from string is actually a regular expression;
it should always start with ‘~’. The function abbreviate-file-name performs these

substitutions.

You can set this variable in ‘site-init.el’ to describe the abbreviations appropriate

for your site.

Here’s an example, from a system on which file system ‘/home/fsf’ and so on are
normally accessed through symbolic links named ‘/fsf’ and so on.

((""/home/fsf" . "/fsf")
(ll ‘/home/gp" . ll/gpll)
("‘/home/gd" . ll/gdll))

22.10.3 Absolute and Relative File Names

All the directories in the file system form a tree starting at the root directory. A file name can
specify all the directory names starting from the root of the tree; then it is called an absolute file
name. Or it can specify the position of the file in the tree relative to a default directory; then it is
called an relative file name. On Unix, an absolute file name starts with a slash or a tilde (**’), and
a relative one does not. The rules on VMS are complicated.

410 GNU Emacs Lisp Reference Manual

file-name-absolute-p filename Function
This function returns t if file filename is an absolute file name, nil otherwise. On
VMS, this function understands both Unix syntax and VMS syntax.

(file-name-absolute-p "“rms/foo")
=t

(file-name-absolute-p "rms/foo")
= nil

(file-name-absolute-p "/user/rms/foo")
=t

22.10.4 Functions that Expand Filenames

Expansion of a file name means converting a relative file name to an absolute one. Since this
is done relative to a default directory, you must specify the default directory name as well as the
file name to be expanded. Expansion also simplifies file names by eliminating redundancies such
as ‘./’ and ‘name/../’ .

expand-file-name filename &optional directory Function
This function converts filename to an absolute file name. If directory is supplied, it
is the directory to start with if filename is relative. (The value of directory should
itself be an absolute, expanded file name; it should not start with ‘~’.) Otherwise, the

current buffer’s value of default-directory is used. For example:

(expand-file-name "foo")

= "/xcssun/users/rms/lewis/foo"
(expand-file-name "../foo")

= "/xcssun/users/rms/foo"
(expand-file-name "foo" "/usr/spool/")

= "/usr/spool/foo"
(expand-file-name "$HOME/foo")

= "/xcssun/users/rms/lewis/$HOME/foo0"

Filenames containing ‘.” or ‘..’ are simplified to their canonical form:

(expand-file-name "bar/../foo")

= "/xcssun/users/rms/lewis/foo"

Chapter 22: Files 411

*~/’ is expanded into the user’s home directory. A ¢/’ or ‘~’ following a ‘/’ is taken
to be the start of an absolute file name that overrides what precedes it, so everything
before that ¢/’ or ‘=’ is deleted. For example:

(expand-file-name
"/al/gnu//usr/local/lib/emacs/etc/MACHINES")
= "/usr/local/lib/emacs/etc/MACHINES"
(expand-file-name "/al/gnu/~/foo")
= "/xcssun/users/rms/foo"

In both cases, ‘/al/gnu/’ is discarded because an absolute file name follows it.

Note that expand-file-name does not expand environment variables; that is done only
by substitute-in-file-name.

file-relative-name filename directory Function
This function does the inverse of expansion—it tries to return a relative name which is
equivalent to filename when interpreted relative to directory. (If such a relative name
would be longer than the absolute name, it returns the absolute name instead.)

(file-relative-name "/foo/bar" "/foo/")
= "bar")

(file-relative-name "/foo/bar" "/hack/")
= "/foo/bar")

default-directory Variable
The value of this buffer-local variable is the default directory for the current buffer. It
is local in every buffer. expand-file-name uses the default directory when its second
argument is nil.

On Unix systems, the value is always a string ending with a slash.

default-directory
= "/user/lewis/manual/"

substitute-in-file-name filename Function
This function replaces environment variables names in filename with the values to
which they are set by the operating system. Following standard Unix shell syntax, ‘$’
is the prefix to substitute an environment variable value.

412 GNU Emacs Lisp Reference Manual

The environment variable name is the series of alphanumeric characters (including
underscores) that follow the ‘¢’. If the character following the ‘¢’ is a ‘{’, then the
variable name is everything up to the matching ‘}’.

Here we assume that the environment variable HOME, which holds the user’s home
directory name, has the value ‘/xcssun/users/rms’.

(substitute-in-file—-name "$HOME/foo")
= "/xcssun/users/rms/foo"

Ifa ‘7 or a ¢/’ appears following a ‘/’, after substitution, everything before the following
¢/’ is discarded:

(substitute-in-file-name "bar/~/foo")
= "~/foo"

(substitute-in-file-name "/usr/local/$HOME/foo")
= "/xcssun/users/rms/foo"

On VMS, ‘$’ substitution is not done, so this function does nothing on VMS except

discard superfluous initial components as shown above.

22.10.5 Generating Unique File Names

Some programs need to write temporary files. Here is the usual way to construct a name for

such a file:

(make-temp-name (concat "/tmp/" name-of-application))

Here we use the directory ‘/tmp/’ because that is the standard place on Unix for temporary files.
The job of make-temp-name is to prevent two different users or two different jobs from trying to

use the same name.

make-temp-name string Function
This function generates string that can be used as a unique name. The name starts

with the prefix string, and ends with a number that is different in each Emacs job.

(make-temp-name "/tmp/foo")
= "/tmp/f00021304"

Chapter 22: Files 413

To prevent conflicts among different application libraries run in the same Emacs, each
application should have its own string. The number added to the end of the name
distinguishes between the same application running in different Emacs jobs.

22.10.6 File Name Completion

This section describes low-level subroutines for completing a file name. For other completion
functions, see Section 17.5 [Completion|, page 269.

file-name-all-completions partial-filename directory Function
This function returns a list of all possible completions for a file whose name starts with
partial-filename in directory directory. The order of the completions is the order of the
files in the directory, which is unpredictable and conveys no useful information.

The argument partial-filename must be a file name containing no directory part and
no slash. The current buffer’s default directory is prepended to directory, if directory
is not an absolute file name.

‘““rms/lewis’,

In the following example, suppose that the current default directory,
has five files whose names begin with ‘f’: ‘foo’, ‘file™’, ‘file.c’, ‘file.c.”17’, and

‘file.c.”27.

(file-name-all-completions "f" "")
= ("foo" "file™" "file.c."2™"
"file.c.”17" "file.c")

(file-name-all-completions "fo" "")
= ("foo")

file-name-completion filename directory Function
This function completes the file name filename in directory directory. It returns the
longest prefix common to all file names in directory directory that start with filename.

If only one match exists and filename matches it exactly, the function returns t. The
function returns nil if directory directory contains no name starting with filename.

In the following example, suppose that the current default directory has five files whose
names begin with ‘f’: ‘foo’, ‘file”’, ‘file.c’, ‘file.c.”17’, and ‘file.c.”27".

414

(file-name-completion
= "file"

(file-name-completion
= "file.c.™ 17"

(file-name-completion
=t

(file-name-completion
= nil

completion-ignored-extensions

"fi" " ||)

"file'c'~1" HH)

"file.c.~ 1" ")

"file'c'~3" HH)

GNU Emacs Lisp Reference Manual

User Option

file-name-completion usually ignores file names that end in any string in this list.

It does not ignore them when all the possible completions end in one of these suffixes

or when a buffer showing all possible completions is displayed.

A typical value might look like this:

completion-ignored-extensions
= (".O" " oelc" " ".dVi")

22.11 Making Certain File Names “Magic”

You can implement special handling for certain file names. This is called making those names

magic. You must supply a regular expression to define the class of names (all those which match

the regular expression), plus a handler that implements all the primitive Emacs file operations for

file names that do match.

The value of file-name-handler-alist is a list of handlers, together with regular expressions

that decide when to apply each handler. Each element has this form:

(regexp . handler)

All the Emacs primitives for file access and file name transformation check the given file name

against file-name-handler-alist. If the file name matches regexp, the primitives handle that

file by calling handler.

Chapter 22: Files 415

The first argument given to handler is the name of the primitive; the remaining arguments are
the arguments that were passed to that operation. (The first of these arguments is typically the
file name itself.) For example, if you do this:

(file-exists-p filename)

and filename has handler handler, then handler is called like this:

(funcall handler ’file-exists-p filename)

Here are the operations that you can handle for a magic file name:

add-name-to-file, copy-file, delete-directory,
delete-file, directory-file-name, directory-files,
dired-compress-file, dired-uncache,
expand-file-name, file-accessible-directory-p,
file-attributes, file-directory-p,
file-executable-p, file-exists-p, file-local-copy,
file-modes, file-name-all-completions,
file-name-as-directory, file-name-completion,
file-name-directory, file-name-nondirectory,
file-name-sans-versions, file-newer—-than-file-p,
file-readable-p, file-symlink-p, file-writable-p,
insert-directory, insert-file-contents,
make-directory, make-symbolic-1link, rename-file,
set-file-modes, set-visited-file-modtime,
unhandled-file-name-directory,
verify-visited-file-modtime, write-region.

The handler function must handle all of the above operations, and possibly others to be added
in the future. Therefore, it should always reinvoke the ordinary Lisp primitive when it receives an

operation it does not recognize. Here’s one way to do this:

(defun my-file-handler (operation &rest args)
;3 First check for the specific operations
;3 that we have special handling for.
(cond ((eq operation ’insert-file-contents) ...)
((eq operation ’write-region) ...)

; 3 Handle any operation we don’t know about.
(t (let (file-name-handler-alist)
(apply operation args)))))

416 GNU Emacs Lisp Reference Manual

find-file-name-handler file Function
This function returns the handler function for file name file, or nil if there is none.

file-local-copy filename Function
This function copies file filename to the local site, if it isn’t there already. If filename
specifies a “magic” file name which programs outside Emacs cannot directly read or
write, this copies the contents to an ordinary file and returns that file’s name.

If filename is an ordinary file name, not magic, then this function does nothing and
returns nil.

unhandled-file-name-directory filename Function
This function returns the name of a directory that is not magic. It uses the directory
part of filename if that is not magic. Otherwise, it asks the handler what to do.

This is used for running a subprocess; any subprocess must have a non-magic directory
to serve as its current directory.

Chapter 23: Backups and Auto-Saving 417

23 Backups and Auto-Saving

Backup files and auto-save files are two methods by which Emacs tries to protect the user from
the consequences of crashes or of the user’s own errors. Auto-saving preserves the text from earlier
in the current editing session; backup files preserve file contents prior to the current session.

23.1 Backup Files

A backup file is a copy of the old contents of a file you are editing. Emacs makes a backup
file the first time you save a buffer into its visited file. Normally, this means that the backup file
contains the contents of the file as it was before the current editing session. The contents of the

backup file normally remain unchanged once it exists.

Backups are usually made by renaming the visited file to a new name. Optionally, you can
specify that backup files should be made by copying the visited file. This choice makes a difference
for files with multiple names; it also can affect whether the edited file remains owned by the original

owner or becomes owned by the user editing it.

By default, Emacs makes a single backup file for each file edited. You can alternatively request
numbered backups; then each new backup file gets a new name. You can delete old numbered
backups when you don’t want them any more, or Emacs can delete them automatically.

23.1.1 Making Backup Files

backup-buffer Function
This function makes a backup of the file visited by the current buffer, if appropriate.
It is called by save-buffer before saving the buffer the first time.

buffer-backed-up Variable
This buffer-local variable indicates whether this buffer’s file has been backed up on
account of this buffer. If it is non-nil, then the backup file has been written. Otherwise,
the file should be backed up when it is next saved (if backup files are enabled). This is
a permanent local; kill-local-variables does not alter it.

418 GNU Emacs Lisp Reference Manual

make-backup-files User Option
This variable determines whether or not to make backup files. If it is non-nil, then
Emacs creates a backup of each file when it is saved for the first time.

The following example shows how to change the make-backup-files variable only in
the ‘RMAIL’ buffer and not elsewhere. Setting it nil stops Emacs from making backups
of the ‘RMAIL’ file, which may save disk space. (You would put this code in your
‘.emacs’ file.)

(add-hook ’rmail-mode-hook
(function (lambda ()
(make-local-variable
’make-backup-files)
(setq make-backup-files nil))))

backup-enable-predicate filename Variable
This variable’s value is a function to be called on certain occasions to decide whether
a there should be backup files for file name filename. If it returns nil, backups are
disabled. Otherwise, backups are enabled (if make-backup-files is true).

23.1.2 Backup by Renaming or by Copying?
There are two ways that Emacs can make a backup file:

e Emacs can rename the original file so that it becomes a backup file, and then write the buffer
being saved into a new file. After this procedure, any other names (i.e., hard links) of the
original file now refer to the backup file. The new file is owned by the user doing the editing,
and its group is the default for new files written by the user in that directory.

e Emacs can copy the original file into a backup file, and then overwrite the original file with
new contents. After this procedure, any other names (i.e., hard links) of the original file still
refer to the current version of the file. The file’s owner and group will be unchanged.

The first method, renaming, is the default.

The variable backup-by-copying, if non-nil, says to use the second method, which is to copy
the original file and overwrite it with the new buffer contents. The variable file-precious-flag,
if non-nil, also has this effect (as a sideline of its main significance). See Section 22.2 [Saving
Buffers], page 389.

Chapter 23: Backups and Auto-Saving 419

The following two variables, when non-nil, cause the second method to be used in certain

special cases. They have no effect on the treatment of files that don’t fall into the special cases.

backup-by-copying Variable
This variable controls whether to make backup files by copying. If it is non-nil, then
Emacs always copies the current contents of the file into the backup file before writing
the buffer to be saved to the file. (In many circumstances, this has the same effect as

file-precious-flag.)

backup-by-copying-when-linked Variable
This variable controls whether to make backups by copying for files with multiple names
(hard links). If it is non-nil, then Emacs uses copying to create backups for those files.

This variable is significant only if backup-by-copying is nil, since copying is always
used when that variable is non-nil.

backup-by-copying-when-mismatch Variable
This variable controls whether to make backups by copying in cases where renaming
would change either the owner or the group of the file. If it is non-nil then Emacs

creates backups by copying in such cases.

The value has no effect when renaming would not alter the owner or group of the file;
that is, for files which are owned by the user and whose group matches the default for

a new file created there by the user.
This variable is significant only if backup-by-copying is nil, since copying is always
used when that variable is non-nil.

23.1.3 Making and Deleting Numbered Backup Files

If a file’s name is ‘foo’, the names of its numbered backup versions are ‘foo.”~v™’, for various
integers v, like this: ‘foo.~17’, ‘fo0.727’, ‘f00.737, ..., ‘foo.72597’, and so on.

version-control User Option
This variable controls whether to make a single non-numbered backup file or multiple

numbered backups.

420 GNU Emacs Lisp Reference Manual

nil Make numbered backups if the visited file already has numbered backups;

otherwise, do not.

never Do not make numbered backups.

anything else
Do make numbered backups.

The use of numbered backups ultimately leads to a large number of backup versions, which must
then be deleted. Emacs can do this automatically.

kept-new-versions User Option
The value of this variable is the number of oldest versions to keep when a new numbered
backup is made. The newly made backup is included in the count. The default value
is 2.

kept-old-versions User Option
The value of this variable is the number of oldest versions to keep when a new numbered
backup is made. The default value is 2.

dired-kept-versions User Option
This variable plays a role in Dired’s dired-clean-directory (.) command like that
played by kept-old-versions when a backup file is made. The default value is 2.

If there are backups numbered 1, 2, 3, 5, and 7, and both of these variables have the value 2, then
the backups numbered 1 and 2 are kept as old versions and those numbered 5 and 7 are kept as new
versions; backup version 3 is deleted. The function find-backup-file-name (see Section 23.1.4
[Backup Names|, page 421) is responsible for determining which backup versions to delete, but does
not delete them itself.

trim-versions-without-asking User Option
If this variable is non-nil, then saving a file deletes excess backup versions silently.
Otherwise, it asks the user whether to delete them.

Chapter 23: Backups and Auto-Saving 421

23.1.4 Naming Backup Files

The functions in this section are documented mainly because you can customize the naming
conventions for backup files by redefining them. If you change one, you probably need to change
the rest.

backup-file-name-p filename Function
This function returns a non-nil value if filename is a possible name for a backup file.

A file with the name filename need not exist; the function just checks the name.

(backup-file-name-p "foo")
= nil

(backup-file-name-p "foo™")
= 3

The standard definition of this function is as follows:

(defun backup-file-name-p (file)

"Return non-nil if FILE is a backup file \
name (numeric or not)..."

(string-match ""$" file))

Thus, the function returns a non-nil value if the file name ends with a ‘~’. (We use
a backslash to split the documentation string’s first line into two lines in the text, but

produce just one line in the string itself.)

This simple expression is placed in a separate function to make it easy to redefine for

customization.

make-backup-file-name filename Function
This function returns a string which is the name to use for a non-numbered backup file
for file filename. On Unix, this is just filename with a tilde appended.

The standard definition of this function is as follows:

(defun make-backup-file-name (file)
"Create the non—numeric backup file name for FILE..."

(concat file "™"))

422 GNU Emacs Lisp Reference Manual

You can change the backup file naming convention by redefining this function. In the
following example, make-backup-file-name is redefined to prepend a ‘.’ as well as to

append a tilde.

(defun make-backup-file-name (filename)
(concat "." filename "7"))

(make-backup-file-name "backups.texi")
= ".backups.texi™"

find-backup-file-name filename Function
This function computes the file name for a new backup file for filename. It may also
propose certain existing backup files for deletion. find-backup-file-name returns a
list whose CAR is the name for the new backup file and whose CDR is a list of backup

files whose deletion is proposed.

Two variables, kept-old-versions and kept-new-versions, determine which old
backup versions should be kept (by excluding them from the list of backup files ripe
for deletion). See Section 23.1.3 [Numbered Backups], page 419.

In this example, the value says that ‘“rms/foo.~5~’ is the name to use for the new
backup file, and ‘“rms/foo.”37’ is an “excess” version that the caller should consider

deleting now.

(find-backup-file-name "“rms/foo")
= (""rms/foo.”5"" "“rms/foo.”37")

file-newest-backup filename Function
This function returns the name of the most recent backup file for filename, or nil that
file has no backup files.

Some file comparison commands use this function in order to compare a file by default

with its most recent backup.

23.2 Auto-Saving

Emacs periodically saves all files that you are visiting; this is called auto-saving. Auto-saving

prevents you from losing more than a limited amount of work if the system crashes. By default,

Chapter 23: Backups and Auto-Saving 423

auto-saves happen every 300 keystrokes, or after around 30 seconds of idle time. See section “Auto-
Saving: Protection Against Disasters” in The GNU Emacs Manual, for information on auto-save
for users. Here we describe the functions used to implement auto-saving and the variables that
control them.

buffer-auto-save-file-name Variable
This buffer-local variable is the name of the file used for auto-saving the current buffer.
It is nil if the buffer should not be auto-saved.

buffer-auto-save-file—name
=> "/xcssun/users/rms/lewis/#files.texi#"

auto-save-mode arg Command
When used interactively without an argument, this command is a toggle switch: it
turns on auto-saving of the current buffer if it is off, and vice-versa. With an argument
arg, the command turns auto-saving on if the value of arg is t, a nonempty list, or a
positive integer. Otherwise, it turns auto-saving off.

auto-save-file-name-p filename Function
This function returns a non-nil value if filename is a string that could be the name of
an auto-save file. It works based on knowledge of the naming convention for auto-save
files: a name that begins and ends with hash marks (‘#’) is a possible auto-save file

name. The argument filename should not contain a directory part.

(make-auto-save-file-name)

= "/xcssun/users/rms/lewis/#files.texi#"
(auto-save-file-name-p "#files.texi#")

= 0
(auto-save-file-name-p "files.texi")

= nil

The standard definition of this function is as follows:

(defun auto-save-file-name-p (filename)
"Return non-nil if FILENAME can be yielded by..."
(string-match "~“#.*#$" filename))

424 GNU Emacs Lisp Reference Manual

This function exists so that you can customize it if you wish to change the naming
convention for auto-save files. If you redefine it, be sure to redefine the function make-
auto-save-file-name correspondingly.

make-auto-save-file-name Function
This function returns the file name to use for auto-saving the current buffer. This is
just the file name with hash marks (‘#’) appended and prepended to it. This function
does not look at the variable auto-save-visited-file-name; that should be checked
before this function is called.

(make-auto-save-file-name)
= "/xcssun/users/rms/lewis/#backup.texi#"

The standard definition of this function is as follows:

(defun make-auto-save-file-name ()
"Return file name to use for auto-saves \
of current buffer..."
(if buffer-file-name
(concat
(file-name-directory buffer-file-name)
nggn
(file-name-nondirectory buffer-file-name)
"H")
(expand-file-name
(concat "#%" (buffer-name) "#"))))

This exists as a separate function so that you can redefine it to customize the nam-
ing convention for auto-save files. Be sure to change auto-save-file-name-p in a
corresponding way.

auto-save-visited-file-name Variable
If this variable is non-nil, Emacs auto-saves buffers in the files they are visiting. That
is, the auto-save is done in the same file which you are editing. Normally, this variable
is nil, so auto-save files have distinct names that are created by make-auto-save-
file-name.

When you change the value of this variable, the value does not take effect until the

next time auto-save mode is reenabled in any given buffer. If auto-save mode is already

Chapter 23: Backups and Auto-Saving 425

enabled, auto-saves continue to go in the same file name until auto-save-mode is called

again.

recent-auto-save-p Function
This function returns t if the current buffer has been auto-saved since the last time it

was read in or saved.

set-buffer-auto-saved Function
This function marks the current buffer as auto-saved. The buffer will not be auto-saved
again until the buffer text is changed again. The function returns nil.

auto-save-interval User Option
The value of this variable is the number of characters that Emacs reads from the
keyboard between auto-saves. Each time this many more characters are read, auto-
saving is done for all buffers in which it is enabled.

auto-save-timeout User Option
The value of this variable is the number of seconds of idle time that should cause auto-
saving. Each time the user pauses for this long, Emacs auto-saves any buffers that need
it. (Actually, the specified timeout is multiplied by a factor depending on the size of

the current buffer.)

auto-save-hook Variable
This normal hook is run whenever an auto-save is about to happen.

auto-save-default User Option
If this variable is non-nil, buffers that are visiting files have auto-saving enabled by
default. Otherwise, they do not.

do-auto-save &optional no-message Command
This function auto-saves all buffers that need to be auto-saved. This is all buffers for
which auto-saving is enabled and that have been changed since the last time they were
auto-saved.

Normally, if any buffers are auto-saved, a message ‘Auto-saving. ..’ is displayed in
the echo area while auto-saving is going on. However, if no-message is non-nil, the

message is inhibited.

426 GNU Emacs Lisp Reference Manual

delete-auto-save-file-if-necessary Function
This function deletes the current buffer’s auto-save file if delete-auto-save-files is
non-nil. It is called every time a buffer is saved.

delete-auto-save-files Variable
This variable is used by the function delete-auto-save-file-if-necessary. If it is
non-nil, Emacs deletes auto-save files when a true save is done (in the visited file).
This saves on disk space and unclutters your directory.

rename-auto-save-file Function
This function adjusts the current buffer’s auto-save file name if the visited file name
has changed. It also renames an existing auto-save file. If the visited file name has not
changed, this function does nothing.

23.3 Reverting

If you have made extensive changes to a file and then change your mind about them, you can
get rid of them by reading in the previous version of the file with the revert-buffer command.
See section “Reverting a Buffer” in The GNU Emacs Manual.

revert-buffer &optional check-auto-save noconfirm Command
This command replaces the buffer text with the text of the visited file on disk. This
action undoes all changes since the file was visited or saved.

If the argument check-auto-save is non-nil, and the latest auto-save file is more recent
than the visited file, revert-buffer asks the user whether to use that instead. Oth-
erwise, it always uses the text of the visited file itself. Interactively, check-auto-save is
set if there is a numeric prefix argument.

When the value of the noconfirm argument is non-nil, revert-buffer does not ask for
confirmation for the reversion action. This means that the buffer contents are deleted
and replaced by the text from the file on the disk, with no further opportunities for
the user to prevent it.

Since reverting works by deleting the entire text of the buffer and inserting the file
contents, all the buffer’s markers are relocated to point at the beginning of the buffer.
This is not “correct”, but then, there is no way to determine what would be correct.

Chapter 23: Backups and Auto-Saving 427

It is not possible to determine, from the text before and after, which characters after

reversion correspond to which characters before.

If the value of the revert-buffer-function variable is non-nil, it is called as a
function with no arguments to do the work.

revert-buffer-function Variable
The value of this variable is the function to use to revert this buffer; but if the value
of this variable is nil, then the revert-buffer function carries out its default action.
Modes such as Dired mode, in which the text being edited does not consist of a file’s
contents but can be regenerated in some other fashion, give this variable a buffer-local
value that is a function to regenerate the contents.

revert-buffer-insert-file-contents-function Variable
The value of this variable, if non-nil, is the function to use to insert contents when
reverting this buffer. The function receives two arguments, first the file name to use,
and second, t if the user has asked to read the auto-save file.

recover-file filename Command
This function visits filename, but gets the contents from its last auto-save file. This is
useful after the system has crashed, to resume editing the same file without losing all

the work done in the previous session.

An error is signaled if there is no auto-save file for filename, or if filename is newer
than its auto-save file. If filename does not exist, but its auto-save file does, then the
auto-save file is read as usual. This last situation may occur if you visited a nonexistent
file and never actually saved it.

428 GNU Emacs Lisp Reference Manual

Chapter 24: Buffers 429

24 Buffers

A buffer is a Lisp object containing text to be edited. Buffers are used to hold the contents
of files that are being visited; there may also be buffers which are not visiting files. While several
buffers may exist at one time, exactly one buffer is designated the current buffer at any time. Most
editing commands act on the contents of the current buffer. Each buffer, including the current
buffer, may or may not be displayed in any windows.

24.1 Buffer Basics

Buffers in Emacs editing are objects which have distinct names and hold text that can be edited.
Buffers appear to Lisp programs as a special data type. The contents of a buffer may be viewed as
an extendable string; insertions and deletions may occur in any part of the buffer. See Chapter 29
[Text], page 517.

A Lisp buffer object contains numerous pieces of information. Some of this information is
directly accessible to the programmer through variables, while other information is only accessible
through special-purpose functions. For example, the width of a tab character is directly accessible
through a variable, while the value of point is accessible only through a primitive function.

Buffer-specific information that is directly accessible is stored in buffer-local variable bindings,
which are variable values that are effective only in a particular buffer. This feature allows each
buffer to override the values of certain variables. Most major modes override variables such as
fill-column or comment-column in this way. For more information about buffer-local variables
and functions related to them, see Section 10.9 [Buffer-Local Variables], page 166.

For functions and variables related to visiting files in buffers, see Section 22.1 [Visiting Files],
page 385 and Section 22.2 [Saving Buffers], page 389. For functions and variables related to the
display of buffers in windows, see Section 25.6 [Buffers and Windows]|, page 454.

bufferp object Function
This function returns t if object is a buffer, nil otherwise.

430 GNU Emacs Lisp Reference Manual

24.2 Buffer Names

Each buffer has a unique name, which is a string. Many of the functions that work on buffers
accept either a buffer or a buffer name as an argument. Any argument called buffer-or-name is of
this sort, and an error is signaled if it is neither a string nor a buffer. Any argument called buffer
is required to be an actual buffer object, not a name.

Buffers that are ephemeral and generally uninteresting to the user have names starting with a
space, which prevents them from being listed by the list-buffers or buffer-menu commands.
(A name starting with space also initially disables recording undo information; see Section 29.9
[Undo], page 532.)

buffer-name &optional buffer Function
This function returns the name of buffer as a string. If buffer is not supplied, it defaults
to the current buffer.

If buffer-name returns nil, it means that buffer has been killed. See Section 24.9
[Killing Buffers], page 440.

(buffer-name)
= "buffers.texi"
(setq foo (get-buffer "temp"))
= #<buffer temp>
(kill-buffer foo)
= nil

(buffer-name foo)

= nil
foo
= #<killed buffer>
rename-buffer newname &optional unique Command

This function renames the current buffer to newname. An error is signaled if newname
is not a string, or if there is already a buffer with that name. The function returns nil.

Ordinarily, rename-buffer signals an error if newname is already in use. However, if
unique is non-nil, it modifies newname to make a name that is not in use. Interactively,

you can make unique non-nil with a numeric prefix argument.

Chapter 24: Buffers 431

One application of this command is to rename the ‘*shell*’ buffer to some other name,
thus making it possible to create a second shell buffer under the name ‘*shellx’.

get-buffer buffer-or-name Function
This function returns the buffer specified by buffer-or-name. If buffer-or-name is a
string and there is no buffer with that name, the value is nil. If buffer-or-name is a
buffer, it is returned as given. (That is not very useful, so the argument is usually a

name.) For example:

(setq b (get-buffer "lewis"))
= #<buffer lewis>
(get-buffer b)
= #<buffer lewis>
(get-buffer "Frazzle-nots")
= nil

See also the function get-buffer-create in Section 24.8 [Creating Buffers|, page 439.

generate-new-buffer-name starting-name Function
This function returns a name that would be unique for a new buffer—but does not
create the buffer. It starts with starting-name, and produces a name not currently in

use for any buffer by appending a number inside of ‘<...>’.

See the related function generate-new-buffer in Section 24.8 [Creating Buffers],

page 439.

24.3 Buffer File Name

The buffer file name is the name of the file that is visited in that buffer. When a buffer is not
visiting a file, its buffer file name is nil. Most of the time, the buffer name is the same as the
nondirectory part of the buffer file name, but the buffer file name and the buffer name are distinct
and can be set independently. See Section 22.1 [Visiting Files|, page 385.

buffer-file-name &optional buffer Function
This function returns the absolute file name of the file that buffer is visiting. If buffer
is not visiting any file, buffer-file-name returns nil. If buffer is not supplied, it

defaults to the current buffer.

432 GNU Emacs Lisp Reference Manual

(buffer-file—name (other-buffer))

= "/usr/user/lewis/manual/files.texi"

buffer-file-name Variable
This buffer-local variable contains the name of the file being visited in the current
buffer, or nil if it is not visiting a file. It is a permanent local, unaffected by kill-
local-variables.

buffer-file—-name

= "/usr/user/lewis/manual/buffers.texi"

It is risky to change this variable’s value without doing various other things. See the
definition of set-visited-file-name in ‘files.el’; some of the things done there,
such as changing the buffer name, are not strictly necessary, but others are essential to
avoid confusing Emacs.

buffer-file-truename Variable
This buffer-local variable holds the truename of the file visited in the current buffer, or
nil if no file is visited. It is a permanent local, unaffected by kill-local-variables.
See Section 22.6.3 [Truenames|, page 398.

buffer-file-number Variable
This buffer-local variable holds the file number and directory device number of the file
visited in the current buffer, or nil if no file or a nonexistent file is visited. It is a per-
manent local, unaffected by kill-local-variables. See Section 22.6.3 [Truenames],
page 398.

The value is normally a list of the form (filenum devnum). This pair of numbers
uniquely identifies the file among all files accessible on the system. See the function
file-attributes, in Section 22.6.4 [File Attributes|, page 398, for more information
about them.

get-file-buffer filename Function
This function returns the buffer visiting file filename. If there is no such buffer, it
returns nil. The argument filename, which must be a string, is expanded (see Sec-
tion 22.10.4 [File Name Expansion]|, page 410), then compared against the visited file
names of all live buffers.

Chapter 24: Buffers 433

(get-file-buffer "buffers.texi")
= #<buffer buffers.texi>

In unusual circumstances, there can be more than one buffer visiting the same file

name. In such cases, this function returns the first such buffer in the buffer list.

set-visited-file-name filename Command
If filename is a non-empty string, this function changes the name of the file visited in
current buffer to filename. (If the buffer had no visited file, this gives it one.) The next
time the buffer is saved it will go in the newly-specified file. This command marks the
buffer as modified, since it does not (as far as Emacs knows) match the contents of
filename, even if it matched the former visited file.

If filename is nil or the empty string, that stands for “no visited file”. In this case,
set-visited-file-name marks the buffer as having no visited file.

When the function set-visited-file-name is called interactively, it prompts for file-

name in the minibuffer.

See also clear-visited-file-modtime and verify-visited-file-modtime in Sec-
tion 24.4 [Buffer Modification], page 433.

list-buffers-directory Variable
This buffer-local variable records a string to display in a buffer listing in place of the
visited file name, for buffers that don’t have a visited file name. Dired buffers use this

variable.

24.4 Buffer Modification

Emacs keeps a flag called the modified flag for each buffer, to record whether you have changed
the text of the buffer. This flag is set to t whenever you alter the contents of the buffer, and
cleared to nil when you save it. Thus, the flag shows whether there are unsaved changes. The
flag value is normally shown in the mode line (see Section 20.3.2 [Mode Line Variables|, page 368),
and controls saving (see Section 22.2 [Saving Buffers], page 389) and auto-saving (see Section 23.2

[Auto-Saving], page 422).

434 GNU Emacs Lisp Reference Manual

Some Lisp programs set the flag explicitly. For example, the function set-visited-file-name
sets the flag to t, because the text does not match the newly-visited file, even if it is unchanged

from the file formerly visited.

The functions that modify the contents of buffers are described in Chapter 29 [Text], page 517.

buffer-modified-p &optional buffer Function
This function returns t if the buffer buffer has been modified since it was last read in
from a file or saved, or nil otherwise. If buffer is not supplied, the current buffer is
tested.

set-buffer-modified-p flag Function
This function marks the current buffer as modified if flag is non-nil, or as unmodified
if the flag is nil.

Another effect of calling this function is to cause unconditional redisplay of the mode
line for the current buffer. In fact, the function force-mode-line-update works by

doing this:

(set-buffer-modified-p (buffer-modified-p))

not-modified Command
This command marks the current buffer as unmodified, and not needing to be saved.
Don’t use this function in programs, since it prints a message in the echo area; use
set-buffer-modified-p (above) instead.

buffer-modified-tick &optional buffer Function
This function returns buffer‘s modification-count. This is a counter that increments
every time the buffer is modified. If buffer is nil (or omitted), the current buffer is

used.

24.5 Comparison of Modification Time

Suppose that you visit a file and make changes in its buffer, and meanwhile the file itself is
changed on disk. At this point, saving the buffer would overwrite the changes in the file. Occasion-
ally this may be what you want, but usually it would lose valuable information. Emacs therefore
checks the file’s modification time using the functions described below before saving the file.

Chapter 24: Buffers 435

verify-visited-file-modtime buffer Function
This function compares Emacs’s record of the modification time for the file that the
buffer is visiting against the actual modification time of the file as recorded by the
operating system. The two should be the same unless some other process has written
the file since Emacs visited or saved it.

The function returns t if the last actual modification time and Emacs’s recorded mod-
ification time are the same, nil otherwise.

clear-visited-file-modtime Function
This function clears out the record of the last modification time of the file being visited
by the current buffer. As a result, the next attempt to save this buffer will not complain
of a discrepancy in file modification times.

This function is called in set-visited-file-name and other exceptional places where

the usual test to avoid overwriting a changed file should not be done.

set-visited-file-modtime &optional time Function
This function updates the buffer’s record of the last modification time of the visited file,
to the value specified by time if time is not nil, and otherwise to the last modification
time of the visited file.

If time is not nil, it should have the form (high . low) or (high low), in either case
containing two integers, each of which holds 16 bits of the time. (This is the same format
that file-attributes uses to return time values; see Section 22.6.4 [File Attributes],
page 398.)

This function is useful if the buffer was not read from the file normally, or if the file
itself has been changed for some known benign reason.

visited-file-modtime Function
This function returns the buffer’s recorded last file modification time, as a list of the
form (high . low). Note that this is not identical to the last modification time of the
file that is visited (though under normal circumstances the values are equal).

ask-user-about-supersession-threat fm Function
This function is used to ask a user how to proceed after an attempt to modify an
obsolete buffer. An obsolete buffer is an unmodified buffer for which the associated file

436 GNU Emacs Lisp Reference Manual

on disk is newer than the last save-time of the buffer. This means some other program
has probably altered the file.

This function is called automatically by Emacs on the proper occasions. It exists so
you can customize Emacs by redefining it. See the file ‘userlock.el’ for the standard
definition.

Depending on the user’s answer, the function may return normally, in which case the
modification of the buffer proceeds, or it may signal a file-supersession error with
data (fn), in which case the proposed buffer modification is not allowed.

See also the file locking mechanism in Section 22.5 [File Locks], page 393.

24.6 Read-Only Buffers

A buffer may be designated as read-only. This means that the buffer’s contents may not be
modified, although you may change your view of the contents by scrolling, narrowing, or widening,
etc.

Read-only buffers are used in two kinds of situations:

e A buffer visiting a file is made read-only if the file is write-protected.
Here, the purpose is to show the user that editing the buffer with the aim of saving it in the
file may be futile or undesirable. The user who wants to change the buffer text despite this
can do so after clearing the read-only flag with the function toggle-read-only.

e Modes such as Dired and Rmail make buffers read-only when altering the contents with the
usual editing commands is probably a mistake.
The special commands of the mode in question bind buffer-read-only to nil (with let)
around the places where they change the text.

buffer-read-only Variable
This buffer-local variable specifies whether the buffer is read-only. The buffer is read-
only if this variable is non-nil.

toggle-read-only Command
This command changes whether the current buffer is read-only. It is intended for
interactive use; don’t use it in programs. At any given point in a program, you should

Chapter 24: Buffers 437

know whether you want the read-only flag on or off; so you can set buffer-read-only

explicitly to the proper value, t or nil.

barf-if-buffer-read-only Function
This function signals a buffer-read-only error if the current buffer is read-only. See
Section 18.3 [Interactive Call], page 294, for another way to signal an error if the current

buffer is read-only.

24.7 The Buffer List

The buffer list is a list of all buffers that have not been killed. The order of the buffers in the list
is based primarily on how recently each buffer has been displayed in the selected window. Several
functions, notably other-buffer, make use of this ordering.

buffer-list Function
This function returns a list of all buffers, including those whose names begin with a
space. The elements are actual buffers, not their names.

(buffer-list)
= (#<buffer buffers.texi>
#<buffer *Minibuf-1%> #<buffer buffer.c>
#<buffer *Help*> #<buffer TAGS>)

;; Note that the name of the minibuffer

;3 begins with a space!
(mapcar (function buffer-name) (buffer-list))

= ("buffers.texi" " *Minibuf-1x*"
"buffer.c" "xHelp*" "TAGS")

Buffers appear earlier in the list if they were current more recently.

This list is a copy of a list used inside Emacs; modifying it has no effect on the buffers.

other-buffer &optional buffer-or-name visible-ok Function
This function returns the first buffer in the buffer list other than buffer-or-name. Usu-
ally this is the buffer most recently shown in the selected window, aside from buffer-or-

438 GNU Emacs Lisp Reference Manual

name. Buffers are moved to the front of the list when they are selected and to the end

when they are buried. Buffers whose names start with a space are not even considered.

If buffer-or-name is not supplied (or if it is not a buffer), then other-buffer returns

the first buffer on the buffer list that is not visible in any window.

Normally, other-buffer avoids returning a buffer visible in any window, except as a
last resort. However, if visible-ok is non-nil, then a buffer displayed in some window

is admissible to return.

If no suitable buffer exists, the buffer ‘*scratch#’ is returned (and created, if neces-

sary).

list-buffers &optional files-only Command
This function displays a listing of the names of existing buffers. It clears the buffer
‘*Buffer List*’, then inserts the listing into that buffer and displays it in a window.
list-buffers is intended for interactive use, and is described fully in The GNU Emacs
Manual. Tt returns nil.

bury-buffer &optional buffer-or-name Command
This function puts buffer-or-name at the end of the buffer list without changing the
order of any of the other buffers on the list. This buffer therefore becomes the least
desirable candidate for other-buffer to return, and appears last in the list displayed
by list-buffers.

If buffer-or-name is nil or omitted, this means to bury the current buffer. In addi-
tion, this switches to some other buffer (obtained using other-buffer) in the selected
window. If the buffer is displayed in a window other than the selected one, it remains
there.

If you wish to remove a buffer from all the windows that display it, you can do so
with a loop that uses get-buffer-window. See Section 25.6 [Buffers and Windows],
page 454.

Chapter 24: Buffers 439

24.8 Creating Buffers

This section describes the two primitives for creating buffers. get-buffer-create creates a
buffer if it finds no existing buffer; generate-new-buffer always creates a new buffer, and gives

it a unique name.

Other functions you can use to create buffers include with-output-to-temp-buffer (see Sec-
tion 35.7 [Temporary Displays], page 653) and create-file-buffer (see Section 22.1 [Visiting
Files], page 385).

get-buffer-create name Function
This function returns a buffer named name. If such a buffer already exists, it is returned.
If such a buffer does not exist, one is created and returned. The buffer does not become

the current buffer—this function does not change which buffer is current.
An error is signaled if name is not a string.

(get-buffer-create "foo")
= #<buffer foo>

The major mode for the new buffer is set by the value of default-major-mode. See
Section 20.1.3 [Auto Major Mode], page 360.

generate-new-buffer name Function
This function returns a newly created, empty buffer, but does not make it current. If
there is no buffer named name, then that is the name of the new buffer. If that name
is in use, this function adds suffixes of the form ‘<n>’ are added to name, where n is

an integer. It tries successive integers starting with 2 until it finds an available name.
An error is signaled if name is not a string.

(generate-new-buffer "bar")
= #<buffer bar>
(generate-new-buffer "bar")

= #<buffer bar<2>>
(generate-new-buffer "bar")
= #<buffer bar<3>>

440 GNU Emacs Lisp Reference Manual

The major mode for the new buffer is set by the value of default-major-mode. See
Section 20.1.3 [Auto Major Mode], page 360.

See the related function generate-new-buffer-name in Section 24.2 [Buffer Names],
page 430.

24.9 Killing Buffers

Killing a buffer makes its name unknown to Emacs and makes its space available for other use.

The buffer object for the buffer which has been killed remains in existence as long as anything
refers to it, but it is specially marked so that you cannot make it current or display it. Killed
buffers retain their identity, however; two distinct buffers, when killed, remain distinct according

to eq.

If you kill a buffer that is current or displayed in a window, Emacs automatically selects or
displays some other buffer instead. This means that killing a buffer can in general change the
current buffer. Therefore, when you kill a buffer, you should also take the precautions associated
with changing the current buffer (unless you happen to know that the buffer being killed isn’t
current). See Section 24.10 [Current Buffer], page 441.

The buffer-name of a killed buffer is nil. You can use this feature to test whether a buffer has

been killed:

(defun killed-buffer-p (buffer)
"Return t if BUFFER is killed."
(not (buffer-name buffer)))

kill-buffer buffer-or-name Command
This function kills the buffer buffer-or-name, freeing all its memory for use as space for
other buffers. (Emacs version 18 and older was unable to return the memory to the
operating system.) It returns nil.

Any processes that have this buffer as the process-buffer are sent the SIGHUP signal,
which normally causes them to terminate. (The usual meaning of SIGHUP is that a
dialup line has been disconnected.) See Section 33.4 [Deleting Processes|, page 610.

Chapter 24: Buffers 441

If the buffer is visiting a file when kill-buffer is called and the buffer has not been
saved since it was last modified, the user is asked to confirm before the buffer is killed.
This is done even if kill-buffer is not called interactively. To prevent the request
for confirmation, clear the modified flag before calling kill-buffer. See Section 24.4
[Buffer Modification], page 433.

Just before actually killing the buffer, after asking all questions, kill-buffer runs
the normal hook kill-buffer-hook. The buffer to be killed is current when the hook
functions run. See Section 20.4 [Hooks|, page 371.

Killing a buffer that is already dead has no effect.

(kill-buffer "foo.unchanged")
= nil
(kill-buffer "foo.changed")

—————————— Buffer: Minibuffer ----------
Buffer foo.changed modified; kill anyway? (yes or no) yes
—————————— Buffer: Minibuffer ----—----—-

= nil

24.10 The Current Buffer

There are, in general, many buffers in an Emacs session. At any time, one of them is designated
as the current buffer. This is the buffer in which most editing takes place, because most of the
primitives for examining or changing text in a buffer operate implicitly on the current buffer (see
Chapter 29 [Text], page 517). Normally the buffer that is displayed on the screen in the selected
window is the current buffer, but this is not always so: a Lisp program can designate any buffer as
current temporarily in order to operate on its contents, without changing what is displayed on the
screen.

The way to designate a current buffer in a Lisp program is by calling set-buffer. The specified
buffer remains current until a new one is designated.

When an editing command returns to the editor command loop, the command loop designates
the buffer displayed in the selected window as current, to prevent confusion: the buffer that the
cursor is in, when Emacs reads a command, is the one to which the command will apply. (See
Chapter 18 [Command Loop]|, page 289.) Therefore, set-buffer is not usable for switching visibly

442 GNU Emacs Lisp Reference Manual

to a different buffer so that the user can edit it. For this, you must use the functions described in
Section 25.7 [Displaying Buffers|, page 455.

However, Lisp functions that change to a different current buffer should not leave it to the
command loop to set it back afterwards. Editing commands written in Emacs Lisp can be called
from other programs as well as from the command loop. It is convenient for the caller if the
subroutine does not change which buffer is current (unless, of course, that is the subroutine’s
purpose). Therefore, you should normally use set-buffer within a save-excursion that will
restore the current buffer when your program is done (see Section 27.3 [Excursions], page 502).
Here is an example, the code for the command append-to-buffer (with the documentation string
abridged):

(defun append-to-buffer (buffer start end)
"Append to specified buffer the text of the region..."
(interactive "BAppend to buffer: \nr")
(let ((oldbuf (current-buffer)))
(save-excursion
(set-buffer (get-buffer-create buffer))
(insert-buffer-substring oldbuf start end))))

This function binds a local variable to the current buffer, and then save-excursion records the
values of point, the mark, and the original buffer. Next, set-buffer makes another buffer current.
Finally, insert-buffer-substring copies the string from the original current buffer to the new

current buffer.

If the buffer appended to happens to be displayed in some window, then the next redisplay will
show how its text has changed. Otherwise, you will not see the change immediately on the screen.
The buffer becomes current temporarily during the execution of the command, but this does not
cause it to be displayed.

Changing the current buffer between the binding and unbinding of a buffer-local variable can
cause it to be bound in one buffer, and then unbound in another! You can avoid this problem by
using save-excursion to make sure that the buffer from which the variable was bound is current

again whenever the variable is unbound.

(let (buffer-read-only)
(save-excursion
(set-buffer ...)
..))

Chapter 24: Buffers 443

current-buffer Function
This function returns the current buffer.

(current-buffer)
= #<buffer buffers.texi>

set-buffer buffer-or-name Function
This function makes buffer-or-name the current buffer. However, it does not display
the buffer in the currently selected window or in any other window. This means that
the user cannot necessarily see the buffer, but Lisp programs can in any case work on
it.

This function returns the buffer identified by buffer-or-name. An error is signaled if
buffer-or-name does not identify an existing buffer.

444 GNU Emacs Lisp Reference Manual

Chapter 25: Windows 445

25 Windows

This chapter describes most of the functions and variables related to Emacs windows. See
Chapter 35 [Emacs Display], page 647, for information on how text is displayed in windows.

25.1 Basic Concepts of Emacs Windows

A window is the physical area of the screen in which a buffer is displayed. The term is also used
to refer to a Lisp object which represents that screen area in Emacs Lisp. It should be clear from
the context which is meant.

There is always at least one window displayed on the screen, and there is exactly one window
that we call the selected window. The cursor is in the selected window. The selected window’s
buffer is usually the current buffer (except when set-buffer has been used.) See Section 24.10
[Current Buffer|, page 441.

For all intents, a window only exists while it is displayed on the terminal. Once removed from
the display, the window is effectively deleted and should not be used, even though there may still
be references to it from other Lisp objects. Restoring a saved window configuration is the only way
for a window no longer on the screen to come back to life. (See Section 25.3 [Deleting Windows],
page 449.)

Each window has the following attributes:

e containing frame

e window height

e window width

e window edges with respect to the screen or frame

e the buffer it displays

e position within the buffer at the upper left of the window
e the amount of horizontal scrolling, in columns

e point

e the mark

e how recently the window was selected

446 GNU Emacs Lisp Reference Manual

Applications use multiple windows for a variety of reasons, but most often to give different views
of the same information. In Rmail, for example, you can move through a summary buffer in one

window while the other window shows messages one at a time as they are reached.

The term “window” in Emacs means something similar to what it means in the context of
general puprpose window systems such as X, but not identical. The X Window System subdivides
the screen into X windows; Emacs uses one or more X windows, called frames in Emacs terminology,
and subdivides each of them into (nonoverlapping) Emacs windows. When you use Emacs on an
ordinary display terminal, Emacs subdivides the terminal screen into Emacs windows.

Most window systems support arbitrarily located overlapping windows. In contrast, Emacs
windows are tiled; they never overlap, and together they fill the whole of the screen or frame.
Because of the way in which Emacs creates new windows and resizes them, you can’t create every
conceivable tiling on an Emacs screen. See Section 25.2 [Splitting Windows|, page 446. Also, see
Section 25.13 [Size of Window]|, page 466.

See Chapter 35 [Emacs Display|, page 647, for information on how the contents of the window’s
buffer are displayed in the window.

windowp object Function
This function returns t if object is a window.

25.2 Splitting Windows

The functions described here are the primitives used to split a window into two windows. Two
higher level functions sometimes split a window, but not always: pop-to-buffer and display-
buffer (see Section 25.7 [Displaying Buffers], page 455).

The functions described here do not accept a buffer as an argument. They let the two “halves”
of the split window display the same buffer previously visible in the window that was split.

one-window-p &optional no-mini Function
This function returns non-nil if there is only one window. The argument no-mini, if
non-nil, means don’t count the minibuffer even if it is active; otherwise, the minibuffer
window is included, if active, in the total number of windows which is compared against

one.

Chapter 25: Windows 447

split-window &optional window size horizontal Command
This function splits window into two windows. The original window window remains
the selected window, but occupies only part of its former screen area. The rest is
occupied by a newly created window which is returned as the value of this function.

If horizontal is non-nil, then window splits side by side, keeping the leftmost size
columns and giving the rest of the columns to the new window. Otherwise, it splits
into halves one above the other, keeping the upper size lines and giving the rest of the
lines to the new window. The original window is therefore the right-hand or upper of

the two, and the new window is the left-hand or lower.

If window is omitted or nil, then the selected window is split. If size is omitted or nil,
then window is divided evenly into two parts. (If there is an odd line, it is allocated
to the new window.) When split-window is called interactively, all its arguments are

nil.

The following example starts with one window on a screen that is 50 lines high by 80

columns wide; then the window is split.

(setq w (selected-window))

= #<window 8 on windows.texi>
(window-edges) ; Edges in order:

= (0 0 80 50) ; left—top-right—bottom

;3 Returns window created
(setq w2 (split-window w 15))

= #<window 28 on windows.texi>
(window-edges w2)

= (0 15 80 50) ; Bottom window;

; top is line 15

(window-edges w)

= (0 0 80 15) ; Top window

The screen looks like this:

448 GNU Emacs Lisp Reference Manual

I | line O
[W I
| I
| | 1line 15
I w2 I
| I

line 50

Next, the top window is split horizontally:

(setq w3 (split-window w 35 t))

= #<window 32 on windows.texi>
(window-edges w3)

= (35 0 80 15) ; Left edge at column 35
(window-edges w)

= (0 0 35 15) ; Right edge at column 35
(window-edges w2)

= (0 15 80 50) ; Bottom window unchanged

Now, the screen looks like this:

column 35

| 1line O

| | 1line 15

line 50
column O column 80

split-window-vertically size Command
This function splits the selected window into two windows, one above the other, leaving
the selected window with size lines.

Chapter 25: Windows 449

This function is simply an interface to split-windows. Here is the complete function
definition for it:

(defun split-window-vertically (&optional arg)
"Split selected window into two windows,

one above the other..."
(interactive "P")

(split-window nil (and arg (prefix-numeric-value arg))))

split-window-horizontally size Command
This function splits the selected window into two windows side-by-side, leaving the

selected window with size columns.

This function is simply an interface to split-windows. Here is the complete definition
for split-window-horizontally (except for part of the documentation string):

(defun split-window-horizontally (&optional arg)
"Split selected window into two windows

side by side..."
(interactive "P")

(split-window nil (and arg (prefix-numeric-value arg)) t))

25.3 Deleting Windows

A window remains visible on its frame unless you delete it by calling certain functions that
delete windows. A deleted window cannot appear on the screen, but continues to exist as a Lisp
object until there are no references to it. There is no way to cancel the deletion of a window aside
from restoring a saved window configuration (see Section 25.16 [Window Configurations|, page 471).
Restoring a window configuration also deletes any windows that aren’t part of that configuration.

When you delete a window, the space it took up is given to one adjacent sibling. (In Emacs
version 18, the space was divided evenly among all the siblings.)

window-live-p window Function
This function returns nil if window is deleted, and t otherwise.

450 GNU Emacs Lisp Reference Manual

Warning: erroneous information or fatal errors may result from using a deleted window

as if it were live.

delete-window &optional window Command
This function removes window from the display. If window is omitted, then the selected
window is deleted. An error is signaled if there is only one window when delete-window

is called.
This function returns nil.

When delete-window is called interactively, window defaults to the selected window.

delete-other-windows &optional window Command
This function makes window the only window on its frame, by deleting all the other
windows. If window is omitted or nil, then the selected window is used by default.

The result is nil.

delete-windows-on buffer Command
This function deletes all windows showing buffer. If there are no windows showing
buffer, then this function does nothing. If all windows in some frame are showing
buffer (including the case where there is only one window), then the frame reverts to
having a single window showing the buffer chosen by other-buffer. See Section 24.7
[The Buffer List], page 437.

If there are several windows showing different buffers, then those showing buffer are

removed, and the others are expanded to fill the void.

The result is nil.

25.4 Selecting Windows

When a window is selected, the buffer in the window becomes the current buffer, and the cursor

will appear in it.

Chapter 25: Windows 451

selected-window Function
This function returns the selected window. This is the window in which the cursor
appears and to which many commands apply.

select-window window Function
This function makes window the selected window. The cursor then appears in window
(on redisplay). The buffer being displayed in window is immediately designated the
current buffer.

The return value is window.

(setq w (next-window))
(select-window w)
= #<window 65 on windows.texi>

The following functions choose one of the windows on the screen, offering various criteria for
the choice.

get-lru-window &optional all-frames Function
This function returns the window least recently “used” (that is, selected). The selected
window is always the most recently used window.

The selected window can be the least recently used window if it is the only window. A
newly created window becomes the least recently used window until it is selected. The
minibuffer window is not considered a candidate.

The argument all-frames controls which set of windows are considered. If it is non-nil,
then all windows on all frames are considered. Otherwise, only windows in the selected
frame are considered.

get-largest-window &optional all-frames Function
This function returns the window with the largest area (height times width). If there are
no side-by-side windows, then this is the window with the most lines. The minibuffer
window is not considered a candidate.

If there are two windows of the same size, then the function returns the window which is
first in the cyclic ordering of windows (see following section), starting from the selected

window.

452 GNU Emacs Lisp Reference Manual

The argument all-frames controls which set of windows are considered. If it is non-nil,
then all windows on all frames are considered. Otherwise, only windows in the selected

frame are considered.

25.5 Cycling Ordering of Windows

When you use the command C-x o (other-window) to select the next window, it moves through
all the windows on the screen in a specific cyclic order. For any given configuration of windows,

this order never varies. It is called the cyclic ordering of windows.

This ordering generally goes from top to bottom, and from left to right. But it may go down
first or go right first, depending on the order in which the windows were split.

If the first split was vertical (into windows one above each other), and then the subwindows
were split horizontally, then the ordering is left to right in the top, and then left to right in the next
lower part of the frame, and so on. If the first split was horizontal, the ordering is top to bottom
in the left part, and so on. In general, within each set of siblings at any level in the window tree,

the order is left to right, or top to bottom.

next-window window &optional minibuf all-frames Function
This function returns the window following window in the cyclic ordering of windows.
This is the window which C-x o would select if done when window is selected. If

window is the only window visible, then this function returns window.

The value of the argument minibuf determines whether the minibuffer is included in
the window order. Normally, when minibuf is nil, the minibuffer is included if it is

currently active; this is the behavior of C-x o.

If minibuf is t, then the cyclic ordering includes the minibuffer window even if it is

not active.

If minibuf is neither t nor nil, then the minibuffer window is not included even if it is
active. (The minibuffer window is active while the minibuffer is in use. See Chapter 17
[Minibuffers|, page 263.)

Chapter 25: Windows 453

When there are multiple frames, this functions normally cycles through all the windows
in the selected frame, plus the minibuffer used by the selected frame even if it lies in

some other frame.

If all-frames is t, then it cycles through all the windows in all the frames that currently

exist.

If all-frames is neither t nor nil, then it cycles through precisely the windows in the
selected frame, excluding the minibuffer in use if it lies in some other frame.

This example shows two windows, which both happen to be displaying the same buffer:

(selected-window)

= #<window 56 on windows.texi>
(next-window (selected-window))

= #<window 52 on windows.texi>
(next-window (next-window (selected-window)))

= #<window 56 on windows.texi>

previous-window window &optional minibuf all-frames Function
This function returns the window preceding window in the cyclic ordering of windows.
The other arguments affect which windows are included in the cycle, as in next-window.

other-window count Command
This function selects the countth next window in the cyclic order. If count is negative,

then it selects the —countth preceding window. It returns nil.

In an interactive call, count is the numeric prefix argument.

walk-windows proc &optional minibuf all-frames Function
This function cycles through all visible windows, calling proc once for each window

with the window as its sole argument.

The optional argument minibuf says whether to include minibuffer windows. A value
of t means count the minibuffer window even if not active. A value of nil means count
it only if active. Any other value means not to count the minibuffer even if it is active.

454 GNU Emacs Lisp Reference Manual

If the optional third argument all-frames is t, that means include all windows in all
frames. If all-frames is nil, it means to cycle within the selected frame, but include
the minibuffer window (if minibuf says so) that that frame uses, even if it is on another
frame. If all-frames is neither nil nor t, walk-windows sticks strictly to the selected

frame.

25.6 Buffers and Windows

This section describes low-level functions to examine windows or to show buffers in windows in
a precisely controlled fashion. See the following section for related functions that find a window to
use and specify a buffer for it. The functions described there are easier to use than these, but they
employ heuristics in choosing or creating a window; use these functions when you need complete

control.

set-window-buffer window buffer-or-name Function
This function makes window display buffer-or-name as its contents. It returns nil.

(set-window-buffer (selected-window) "foo")
= nil

window-buffer &optional window Function
This function returns the buffer that window is displaying. If window is omitted, then

this function returns the buffer for the selected window.

(window-buffer)
= #<buffer windows.texi>

get-buffer-window buffer-or-name &optional all-frames Function
This function returns a window currently displaying buffer-or-name, or nil if there is
none. If there are several such windows, then the function returns the first one in the
cyclic ordering of windows, starting from the selected window. See Section 25.5 [Cyclic
Window Ordering], page 452.

The argument all-frames controls which set of windows are considered. If it is non-nil,
then all windows on all frames are considered. Otherwise, only windows in the selected

frame are considered.

Chapter 25: Windows 455

replace-buffer-in-windows buffer Command
This function replaces buffer with some other buffer in all windows displaying it. The
other buffer used is chosen with other-buffer. In the usual applications of this func-
tion, you don’t care which other buffer is used; you just want to make sure that buffer

is no longer displayed.

This function returns nil.

25.7 Displaying Buffers in Windows

In this section we describe convenient functions that choose a window automatically and use it to
display a specified buffer. These functions can also split an existing window in certain circumstances.
We also describe variables that parameterize the heuristics used for choosing a window. See the

preceding section for low-level functions that give you more precise control.

Do not use the functions in this section in order to make a buffer current so that a Lisp program
can access or modify it; they are too drastic for that purpose, since they change the display of
buffers in windows, which is gratuitous and will surprise the user. Instead, use set-buffer (see
Section 24.10 [Current Buffer|, page 441) and save-excursion (see Section 27.3 [Excursions],
page 502), which designate buffers as current for programmed access without affecting the display

of buffers in windows.

switch-to-buffer buffer-or-name &optional norecord Command
This function makes buffer-or-name the current buffer, and also displays the buffer
in the selected window. This means that a human can see the buffer and subsequent
keyboard commands will apply to it. Contrast this with set-buffer, which makes
buffer-or-name the current buffer but does not display it in the selected window. See
Section 24.10 [Current Buffer|, page 441.

If buffer-or-name does not identify an existing buffer, then a new buffer by that name

is created.

Normally the specified buffer is put at the front of the buffer list. This affects the
operation of other-buffer. However, if norecord is non-nil, this is not done. See
Section 24.7 [The Buffer List], page 437.

456 GNU Emacs Lisp Reference Manual

The switch-to-buffer function is often used interactively, as the binding of C-x b. It
is also used frequently in programs. It always returns nil.

switch-to-buffer-other-window buffer-or-name Command
This function makes buffer-or-name the current buffer and displays it in a window not
currently selected. It then selects that window. The handling of the buffer is the same
as in switch-to-buffer.

The previously selected window is absolutely never used to display the buffer. If it is
the only window, then it is split to make a distinct window for this purpose. If the
selected window is already displaying the buffer, then it continues to do so, but another
window is nonetheless found to display it in as well.

pop-to-buffer buffer-or-name &optional other-window Function
This function makes buffer-or-name the current buffer and switches to it in some win-
dow, preferably not the window previously selected. The “popped-to” window becomes
the selected window.

If the variable pop-up-frames is non-nil, pop-to-buffer creates a new frame to
display the buffer in. Otherwise, if the variable pop—up-windows is non-nil, windows
may be split to create a new window that is different from the original window. For
details, see Section 25.8 [Choosing Window], page 457.

If other-window is non-nil, pop-to-buffer finds or creates another window even if
buffer-or-name is already visible in the selected window. Thus buffer-or-name could
end up displayed in two windows. On the other hand, if buffer-or-name is already
displayed in the selected window and other-window is nil, then the selected window
is considered sufficient display for buffer-or-name, so that nothing needs to be done.

If buffer-or-name is a string that does not name an existing buffer, a buffer by that

name is created.

An example use of this function is found at the end of Section 33.8.2 [Filter Functions],
page 617.

Chapter 25: Windows 457

25.8 Choosing a Window

This section describes the basic facility which chooses a window to display a buffer in—display-
buffer. All the higher-level functions and commands use this subroutine. Here we describe how
to use display-buffer and how to customize it.

display-buffer buffer-or-name &optional not-this-window Function
This function makes buffer-or-name appear in some window, like pop-to-buffer, but
it does not select that window and does not make the buffer current. The identity of
the selected window is unaltered by this function.

If not-this-window is non-nil, it means that the specified buffer should be displayed
in a window other than the selected one, even if it is already on display in the selected
window. This can cause the buffer to appear in two windows at once. Otherwise, if
buffer-or-name is already being displayed in any window, that is good enough, so this
function does nothing.

display-buffer returns the window chosen to display buffer-or-name.

Precisely how display-buffer finds or creates a window depends on the variables
described below.

A window can be marked as “dedicated” to its buffer. Then display-buffer does not try to
use that window.

window-dedicated-p window Function

This function returns t if window is marked as dedicated; otherwise nil.

set-window-dedicated-p window flag Function
This function marks window as dedicated if flags is non-nil, and nondedicated other-
wise.

pop-up-windows User Option

This variable controls whether display-buffer makes new windows. If it is non-nil
and there is only one window, then that window is split. If it is nil, then display-
buffer does not split the single window, but rather replaces its buffer.

458 GNU Emacs Lisp Reference Manual

split-height-threshold User Option
This variable determines when display-buffer may split a window, if there are mul-
tiple windows. display-buffer splits the largest window if it has at least this many
lines.

If there is only one window, it is split regardless of this value, provided pop-up-windows
is non-nil.

pop-up-frames User Option
This variable controls whether display-buffer makes new frames. If it is non-nil,
display-buffer makes a new frame. If it is nil, then display-buffer either splits a

window or reuses one.

If this is non-nil, the variables pop—up-windows and split-height-threshold do not
matter.

See Chapter 26 [Frames|, page 473, for more information.

pop-up-frame-function Variable
This variable specifies how to make a new frame if pop—up-frame is non-nil.

Its value should be a function of no arguments. When display-buffer makes a new
frame, it does so by calling that function, which should return a frame. The default
value of the variable is a function which creates a frame using parameters from pop-
up-frame-alist.

pop-up-frame-alist Variable
This variable holds an alist specifying frame parameters used when display-buffer
makes a new frame. See Section 26.2 [Frame Parameters|, page 474, for more informa-
tion about frame parameters.

display-buffer-function Variable
This variable is the most flexible way to customize the behavior of display-buffer. If
it is non-nil, it should be a function that display-buffer calls to do the work. The
function should accept two arguments, the same two arguments that display-buffer
received. It should choose or create a window, display the specified buffer, and then
return the window.

Chapter 25: Windows 459

This hook takes precedence over all the other options and hooks described above.

25.9 Window Point

Each window has its own value of point, independent of the value of point in other windows
displaying the same buffer. This makes it useful to have multiple windows showing one buffer.

e The window point is established when a window is first created; it is initialized from the buffer’s
point, or from the window point of another window opened on the buffer if such a window
exists.

e Selecting a window sets the value of point in its buffer to the window’s value of point. Con-
versely, deselecting a window sets the window’s value of point from that of the buffer. Thus,
when you switch between windows that display a given buffer, the point value for the selected
window is in effect in the buffer, while the point values for the other windows are stored in

those windows.

e As long as the selected window displays the current buffer, the window’s point and the buffer’s

point always move together; they remain equal.

e See Chapter 27 [Positions], page 491, for more details on positions.

As far as the user is concerned, point is where the cursor is, and when the user switches to

another buffer, the cursor jumps to the position of point in that buffer.

window-point window Function
This function returns the current position of point in window. For a nonselected win-
dow, this is the value point would have (in that window’s buffer) if that window were

selected.

When window is the selected window and its buffer is also the current buffer, the value

returned is the same as point in that buffer.

Strictly speaking, it would be more correct to return the “top-level” value of point,

outside of any save-excursion forms. But that value is hard to find.

set-window-point window position Function
This function positions point in window at position position in window’s buffer.

460 GNU Emacs Lisp Reference Manual

25.10 The Window Start Position

Each window contains a marker used to keep track of a buffer position which specifies where in
the buffer display should start. This position is called the display-start position of the window (or
just the start). The character after this position is the one that appears at the upper left corner of
the window. It is usually, but not inevitably, at the beginning of a text line.

window-start &optional window Function
This function returns the display-start position of window window. If window is nil,
the selected window is used.

(window-start)
= 7058

For a more complicated example of use, see the description of count-lines in Sec-
tion 27.2.4 [Text Lines], page 496.

window-end &optional window Function
This function returns the position of the end of the display in window window. If

window is nil, the selected window is used.

set-window-start window position &optional noforce Function
This function sets the display-start position of window to position in window’s buffer.

The display routines insist that the position of point be visible when a buffer is dis-
played. Normally, they change the display-start position (that is, scroll the window)
whenever necessary to make point visible. However, if you specify the start position
with this function with nil for noforce, it means you want display to start at position
even if that would put the location of point off the screen. What the display routines do
in this case is move point instead, to the left margin on the middle line in the window.

For example, if point is 1 and you attempt to set the start of the window to 2, then the
position of point would be “above” the top of the window. The display routines would

automatically move point if it is still 1 when redisplay occurs. Here is an example:

;3 Here is what ‘foo’ looks like before executing

M the set-window-start expression.

Chapter 25: Windows 461

—————————— Buffer: foo —————————-

*This is the contents of buffer foo.

—————————— Buffer: foo -————————-

(set-window-start
(selected-window)
(1+ (window-start)))

; ;5 Here is what ‘foo’ looks like after executing
MM the set-window-start expression.

—————————— Buffer: foo - ———————--
his is the contents of buffer foo.
2
3
*4

However, when noforce is non-nil, set-window-start does nothing if the specified
start position would make point invisible.

This function returns position, regardless of whether the noforce option caused that
position to be overruled.

pos-visible-in-window-p &optional position window Function
This function returns t if position is within the range of text currently visible on the
screen in window. It returns nil if position is scrolled vertically out of view. The
argument position defaults to the current position of point; window, to the selected
window. Here is an example:

462 GNU Emacs Lisp Reference Manual

(or

(pos-visible-in-window-p

(point) (selected-window))
(recenter 0))

The pos-visible-in-window-p function considers only vertical scrolling. It returns
t if position is out of view only because window has been scrolled horizontally. See
Section 25.12 [Horizontal Scrolling], page 465.

25.11 Vertical Scrolling

Vertical scrolling means moving the text up or down in a window. It works by changing the
value of the window’s display-start location. It may also change the value of window-point to keep
it on the screen.

In the commands scroll-up and scroll-down, the directions “up” and “down” refer to the
motion of the text in the buffer at which you are looking through the window. Imagine that the
text is written on a long roll of paper and that the scrolling commands move the paper up and
down. Thus, if you are looking at text in the middle of a buffer and repeatedly call scroll-down,

you will eventually see the beginning of the buffer.

Some people have urged that the opposite convention be used: they imagine that the window
moves over text that remains in place. Then “down” commands would take you to the end of the
buffer. This view is more consistent with the actual relationship between windows and the text in
the buffer, but it is less like what the user sees. The position of a window on the terminal does
not move, and short scrolling commands clearly move the text up or down on the screen. We have
chosen names that fit the user’s point of view.

The scrolling functions (aside from scroll-other-window) will have unpredictable results if the
current buffer is different from the buffer that is displayed in the selected window. See Section 24.10
[Current Buffer|, page 441.

scroll-up &optional count Command
This function scrolls the text in the selected window upward count lines. If count is

negative, scrolling is actually downward.

If count is nil (or omitted), then the length of scroll is next-screen-context-lines
lines less than the usable height of the window (not counting its mode line).

Chapter 25: Windows 463

scroll-up returns nil.

scroll-down &optional count Command
This function scrolls the text in the selected window downward count lines. If count is

negative, scrolling is actually upward.

If count is omitted or nil, then the length of the scroll is next-screen-context-lines
lines less than the usable height of the window.

scroll-down returns nil.

scroll-other-window &optional count Command
This function scrolls the text in another window upward count lines. Negative values
of count, or nil, are handled as in scroll-up.

The window that is scrolled is normally the one following the selected window in the
cyclic ordering of windows—the window that next-window would return. See Sec-
tion 25.5 [Cyclic Window Ordering], page 452.

If the selected window is the minibuffer, the next window is normally the one at the
top left corner. However, you can specify the window to scroll by binding the variable
minibuffer-scroll-window. This variable has no effect when any other window is
selected. See Section 17.8 [Minibuffer Misc|, page 286.

When the minibuffer is active, it is the next window if the selected window is the one
at the bottom right corner. In this case, scroll-other-window attempts to scroll
the minibuffer. If the minibuffer contains just one line, it has nowhere to scroll to, so
the line reappears after the echo area momentarily displays the message “Beginning of
buffer”.

other-window-scroll-buffer Variable
If this variable is non-nil, it tells scroll-other-window which buffer to scroll.

scroll-step User Option
This variable controls how scrolling is done automatically when point moves off the
screen. If the value is zero, then the text is scrolled so that point is centered vertically
in the window. If the value is a positive integer n, then if it is possible to bring point

464 GNU Emacs Lisp Reference Manual

back on screen by scrolling n lines in either direction, that is done; otherwise, point is

centered vertically as usual. The default value is zero.

next-screen-context-lines User Option
The value of this variable is the number of lines of continuity to retain when scrolling by
full screens. For example, when scroll-up executes, this many lines that were visible
at the bottom of the window move to the top of the window. The default value is 2.

recenter &optional count Command
This function scrolls the selected window to put the text where point is located at a
specified vertical position within the window.

If count is a nonnegative number, it puts the line containing point count lines down
from the top of the window. If count is a negative number, then it counts upward from
the bottom of the window, so that —1 stands for the last usable line in the window. If
count is a non-nil list, then it stands for the line in the middle of the window.

If count is nil, then it puts the line containing point in the middle of the window, then
clears and redisplays the entire selected frame.

When recenter is called interactively, Emacs sets count to the raw prefix argument.
Thus, typing C-u as the prefix sets the count to a non-nil list, while typing C-u 4 sets
count to 4, which positions the current line four lines from the top.

Typing C-u 0 C-1 positions the current line at the top of the window. This action is
so handy that some people bind the command to a function key. For example,

(defun line-to-top-of-window ()
"Scroll current line to top of window.
Replaces three keystroke sequence C-u 0 C-1."
(interactive)

(recenter 0))

(global-set-key "\C-cl" ’line-to-top-of-window)

Chapter 25: Windows 465

25.12 Horizontal Scrolling

Because we read English first from top to bottom and second from left to right, horizontal
scrolling is not like vertical scrolling. Vertical scrolling involves selection of a contiguous portion
of text to display. Horizontal scrolling causes part of each line to go off screen. The amount of
horizontal scrolling is therefore specified as a number of columns rather than as a position in the
buffer. It has nothing to do with the display-start position returned by window-start.

Usually, no horizontal scrolling is in effect; then the leftmost column is at the left edge of the
window. In this state, scrolling to the right is meaningless, since there is no data to the left of the
screen to be revealed by it, so it is not allowed. Scrolling to the left is allowed; it causes the first
columns of text to go off the edge of the window and can reveal additional columns on the right
that were truncated before. Once a window has a nonzero amount of leftward horizontal scrolling,
you can scroll it back to the right, but only so far as to reduce the net horizontal scroll to zero.
There is no limit to how far left you can scroll, but eventually all the text will disappear off the
left edge.

scroll-left count Command
This function scrolls the selected window count columns to the left (or to the right if
count is negative). The return value is the total amount of leftward horizontal scrolling
in effect after the change—just like the value returned by window-hscroll.

scroll-right count Command
This function scrolls the selected window count columns to the right (or to the left if
count is negative). The return value is the total amount of leftward horizontal scrolling

in effect after the change—just like the value returned by window-hscroll.

Once you scroll a window as far right as it can go, back to its normal position where

the total leftward scrolling is zero, attempts to scroll any farther have no effect.

window-hscroll &optional window Function
This function returns the total leftward horizontal scrolling of window—the number of
columns by which the text in window is scrolled left past the left margin.

The value is never negative. It is zero when no horizontal scrolling has been done in

window (which is usually the case).

If window is nil, the selected window is used.

466 GNU Emacs Lisp Reference Manual

(window-hscroll)
= 0
(scroll-left 5)
= 5
(window-hscroll)
= 5

set-window-hscroll window columns Function
This function sets the number of columns from the left margin that window is scrolled

to the value of columns. The argument columns should be zero or positive; if not, it is

taken as zero.

The value returned is columns.

(set-window-hscroll (selected-window) 10)
= 10

Here is how you can determine whether a given position position is off the screen due to horizontal

scrolling:

(save-excursion
(goto-char position)
(and
(>= (- (current-column) (window-hscroll window)) 0)
(< (- (current-column) (window-hscroll window))

(window-width window))))

25.13 The Size of a Window

An Emacs window is rectangular, and its size information consists of the height (the number of
lines) and the width (the number of character positions in each line). The mode line is included in
the height. For a window that does not abut the right hand edge of the screen, the column of ‘|’
characters that separates it from the window on the right is included in the width.

The following three functions return size information about a window:

Chapter 25: Windows 467

window-height &optional window Function
This function returns the number of lines in window, including its mode line. If window
fills its entire frame, this is one less than the value of frame-height on that frame (since
the last line is always reserved for the minibuffer).

If window is nil, the function uses the selected window.

(window-height)

= 23
(split-window-vertically)

= #<window 4 on windows.texi>
(window-height)

= 11

window-width &optional window Function
This function returns the number of columns in window. If window fills its entire frame,
this is the same as the value of frame-width on that frame.

If window is nil, the function uses the selected window.

(window-width)
= 80

window-edges &optional window Function
This function returns a list of the edge coordinates of window. If window is nil, the
selected window is used.

The order of the list is (left top right bottom), all elements relative to 0, 0 at the top
left corner of the frame. The element right of the value is one more than the rightmost
column used by window, and bottom is one more than the bottommost row used by
window and its mode-line.

Here is the result obtained on a typical 24-line terminal with just one window:

(window-edges (selected-window))
= (0 0 80 23)

468 GNU Emacs Lisp Reference Manual

If window is at the upper left corner of its frame, right and bottom are the same as
the values returned by (window-width) and (window-height) respectively, and top
and bottom are zero. For example, the edges of the following window are ‘0 0 5 8’.
Assuming that the frame has more than 8 columns, the last column of the window
(column 7) holds a border rather than text. The last row (row 4) holds the mode line,
shown here with ‘xxxxxxxxx’.

XXXXXXXXX 4

When there are side-by-side windows, any window not at the right edge of its frame
has a border in its last column. This border counts as one column in the width of the
window. A window never includes a border on its left, since the border there belongs
to the window to the left.

In the following example, let’s imagine that the frame is 7 columns wide. Then the
edges of the left window are ‘0 0 4 3’ and the edges of the right window are ‘4 0 7 3’.

XXXXXXXXX

0 34 7

25.14 Changing the Size of a Window

The window size functions fall into two classes: high-level commands that change the size of
windows and low-level functions that access window size. Emacs does not permit overlapping
windows or gaps between windows, so resizing one window affects other windows.

Chapter 25: Windows 469

enlarge-window size &optional horizontal Command
This function makes the selected window size lines bigger, stealing lines from neighbor-
ing windows. It takes the lines from one window at a time until that window is used
up, then takes from another. If a window from which lines are stolen shrinks below

window-min-height lines, then that window disappears.

If horizontal is non-nil, then this function makes window wider by size columns,
stealing columns instead of lines. If a window from which columns are stolen shrinks
below window-min-width columns, then that window disappears.

If the window’s frame is smaller than size lines (or columns), then the function makes
the window occupy the entire height (or width) of the frame.

If size is negative, this function shrinks the window by —size lines. If it becomes shorter
than window-min-height, it disappears.

enlarge-window returns nil.

enlarge-window-horizontally columns Command
This function makes the selected window columns wider. It could be defined as follows:

(defun enlarge-window-horizontally (columns)
(enlarge-window columns t))

shrink-window size &optional horizontal Command
This function is like enlarge-window but negates the argument size, making the se-
lected window smaller by giving lines (or columns) to the other windows. If the window
shrinks below window-min-height or window-min-width, then it disappears.

If size is negative, the window is enlarged by —size lines.

shrink-window-horizontally columns Command
This function makes the selected window columns narrower. It could be defined as
follows:

(defun shrink-window-horizontally (columns)

(shrink-window columns t))

470 GNU Emacs Lisp Reference Manual

The following two variables constrain the window size changing functions to a minimum height
and width.

window-min-height User Option
The value of this variable determines how short a window may become before it dis-
appears. A window disappears when it becomes smaller than window-min-height,
and no window may be created that is smaller. The absolute minimum height is two
(allowing one line for the mode line, and one line for the buffer display). Actions which
change window sizes reset this variable to two if it is less than two. The default value
is 4.

window-min-width User Option
The value of this variable determines how narrow a window may become before it
disappears. A window disappears when it becomes narrower than window-min-width,
and no window may be created that is narrower. The absolute minimum width is one;

any value below that is ignored. The default value is 10.

25.15 Coordinates and Windows

This section describes how to compare screen coordinates with windows.

window-at x y &optional frame Function
This function returns the window containing the specified cursor position in the frame
frame. The coordinates x and y are measured in characters and count from the top
left corner of the screen or frame.

If you omit frame, the selected frame is used.

coordinates-in-window-p coordinates window Function
This function checks whether a particular frame position falls within the window win-

dow.
The argument coordinates is a cons cell of this form:

(x . y)

Chapter 25: Windows 471

The coordinates x and y are measured in characters, and count from the top left corner

of the screen or frame.

The value of coordinates-in-window-p is non-nil if the coordinates are inside win-
dow. The value also indicates what part of the window the position is in, as follows:

(relx . rely)
The coordinates are inside window. The numbers relx and rely are the
equivalent window-relative coordinates for the specified position, counting
from 0 at the top left corner of the window.

mode-line
The coordinates are in the mode line of window.

vertical-split
The coordinates are in the vertical line between window and its neighbor
to the right.

nil The coordinates are not in any sense within window.

The function coordinates-in-window-p does not require a frame as argument because

it always uses the frame that window window is on.

25.16 Window Configurations

A window configuration records the entire layout of a frame—all windows, their sizes, which
buffers they contain, what part of each buffer is displayed, and the values of point and the mark.
You can bring back an entire previous layout by restoring a window configuration previously saved.

If you want to record all frames instead of just one, use a frame configuration instead of a
window configuration. See Section 26.10 [Frame Configurations|, page 482.

current-window-configuration Function
This function returns a new object representing Emacs’s current window configuration,
namely the number of windows, their sizes and current buffers, which window is the
selected window, and for each window the displayed buffer, the display-start position,
and the positions of point and the mark. An exception is made for point in the current
buffer, whose value is not saved.

472 GNU Emacs Lisp Reference Manual

set-window-configuration configuration Function
This function restores the configuration of Emacs’s windows and buffers to the state
specified by configuration. The argument configuration must be a value that was

previously returned by current-window-configuration.
Here is a way of using this function to get the same effect as save-window-excursion:

(let ((config (current-window-configuration)))
(unwind-protect
(progn (split-window-vertically nil)
)

(set-window-configuration config)))

save-window-excursion forms. .. Special Form
This special form executes forms in sequence, preserving window sizes and contents,
including the value of point and the portion of the buffer which is visible. It also
preserves the choice of selected window. However, it does not restore the value of point

in the current buffer; use save-excursion for that.
The return value is the value of the final form in forms. For example:

(split-window)
= #<window 25 on control.texi>
(setq w (selected-window))
= #<window 19 on control.texi>
(save-window-excursion
(delete-other—-windows w)
(switch-to-buffer "foo")
’do-something)
= do-something
;35 The screen is now split again.

window-configuration-p object Function
This function returns t if object is a window configuration.

Primitives to look inside of window configurations would make sense, but none are implemented.

It is not clear they are useful enough to be worth implementing.

Chapter 26: Frames 473

26 Frames

A frame is a rectangle on the screen that contains one or more Emacs windows. A frame
initially contains a single main window (plus perhaps a minibuffer window) which you can subdivide

vertically or horizontally into smaller windows.

When Emacs runs on a text-only terminal, it has just one frame, a terminal frame. There is no
way to create another terminal frame after startup. If Emacs has an X display, it does not make
a terminal frame; instead, it initially creates a single X window frame. You can create more; see
Section 26.1 [Creating Frames], page 473.

framep object Function
This predicate returns t if object is a frame, and nil otherwise.

See Chapter 35 [Emacs Display|, page 647, for related information.

26.1 Creating Frames

To create a new frame, call the function make-frame.

make-frame alist Function
This function creates a new frame, if the display mechanism permits creation of frames.
(An X server does; an ordinary terminal does not.)

The argument is an alist specifying frame parameters. Any parameters not mentioned
in alist default according to the value of the variable default-frame-alist; parameters
not specified there either default from the standard X defaults file and X resources.

The set of possible parameters depends in principle on what kind of window sys-
tem Emacs uses to display its the frames. See Section 26.2.3 [X Frame Parameters],
page 475, for documentation of individual parameters you can specify when creating

an X window frame.

default-frame-alist Variable
An alist specifying default values of frame parameters. Each element has the form:

474 GNU Emacs Lisp Reference Manual

(parameter . value)

If you use options that specify window appearance when you invoke Emacs, they take
effect by adding elements to default-frame-alist.

26.2 Frame Parameters

A frame has many parameters that control how it displays.

26.2.1 Access to Frame Parameters

These functions let you read and change the parameter values of a frame.

frame-parameters frame Function
The function frame-parameters returns an alist of all the parameters of frame.

modify-frame-parameters frame alist Function
This function alters the parameters of frame frame based on the elements of alist.
Each element of alist has the form (parm . value), where parm is a symbol naming a
parameter. If you don’t mention a parameter in alist, its value doesn’t change.

26.2.2 Initial Frame Parameters

You can specify the parameters for the initial startup frame by setting initial-frame-alist

in your ‘.emacs’ file.

initial-frame-alist Variable
This variable’s value is an alist of parameter values to when creating the initial X

window frame.

If these parameters specify a separate minibuffer-only frame, and you have not created one,

Emacs creates one for you.

Chapter 26: Frames 475

minibuffer-frame-alist Variable
This variable’s value is an alist of parameter values to when creating an initial
minibuffer-only frame—if such a frame is needed, according to the parameters for
the main initial frame.

26.2.3 X Window Frame Parameters

Just what parameters a frame has depends on what display mechanism it uses. Here is a table

of the parameters of an X window frame:

name The name of the frame.
left The screen position of the left edge, in pixels.
top The screen position of the top edge, in pixels.

height The height of the frame contents, in pixels.

width The width of the frame contents, in pixels.
window-id
The number of the X window for the frame.
minibuffer
Whether this frame has its own minibuffer. The value t means yes, nil means no,

only means this frame is just a minibuffer, a minibuffer window (in some other frame)

means the new frame uses that minibuffer.

font The name of the font for text in the frame. This is a string.

auto-raise

Whether selecting the frame raises it (non-nil means yes).

auto-lower
Whether deselecting the frame lowers it (non-nil means yes).

vertical-scroll-bars

Whether the frame has a scroll bar for vertical scrolling (non-nil means yes).

horizontal-scroll-bars
Whether the frame has a scroll bar for horizontal scrolling (non-nil means yes). (Hor-
izontal scroll bars are not currently implemented.)

icon-type
The type of icon to use for this frame when it is iconified. Non-nil specifies a bitmap
icon, nil a text icon.

476 GNU Emacs Lisp Reference Manual

foreground-color
The color to use for the inside of a character. We use strings to designate colors; the
X server defines the meaningful color names.
background-color
The color to use for the background of text.
mouse-color
The color for the mouse cursor.
cursor—-color
The color for the cursor that shows point.
border-color
The color for the border of the frame.
cursor-type
The way to display the cursor. There are two legitimate values: bar and box. The
value bar specifies a vertical bar between characters as the cursor. The value box
specifies an ordinary black box overlaying the character after point; that is the default.
border-width
The width in pixels of the window border.
internal-border-width
The distance in pixels between text and border.
unsplittable
If non-nil, this frame’s window is never split automatically.
visibility
The state of visibility of the frame. There are three possibilities: nil for invisible, t
for visible, and icon for iconified. See Section 26.8 [Visibility of Frames], page 481.
menu-bar-lines
The number of lines to allocate at the top of the frame for a menu bar. The default is
zero. See Section 19.6.5 [Menu Bar], page 336.
parent-id
The X Window number of the window that should be the parent of this one. Specifying
this lets you create an Emacs window inside some other application’s window. (It is
not certain this will be implemented; try it and see if it works.)

26.2.4 Frame Size And Position

You can read or change the size and position of a frame using the frame parameters left,
top, height and width. When you create a frame, you must specify either both size parameters or
neither. Likewise, you must specify either both position parameters or neither. Whatever geometry
parameters you don’t specify are chosen by the window manager in its usual fashion.

Chapter 26: Frames 477

Here are some special features for working with sizes and positions:

set-frame-position frame left top Function
This function sets the position of the top left corner of frame—to left and top. These
arguments are measured in pixels, counting from the top left corner of the screen.

frame-height &optional frame Function
frame-width &optional frame Function
These functions return the height and width of frame, measured in characters. If you

don’t supply frame, they use the selected frame.

frame-pixel-height &optional frame Function

frame-pixel-width &optional frame Function
These functions return the height and width of frame, measured in pixels. If you don’t
supply frame, they use the selected frame.

frame-char-height &optional frame Function

frame-char-width &optional frame Function
These functions return the height and width, respectively, of a character in frame,
measured in pixels. The values depend on the choice of font. If you don’t supply
frame, these functions use the selected frame.

set-frame-size frame cols rows Function
This function sets the size of frame, measured in characters; cols and rows specify the
new width and height.

To set the size with values measured in pixels, use modify-frame-parameters to set
the width and height parameters. See Section 26.2.3 [X Frame Parameters|, page 475.

The old-fashioned functions set-screen-height and set-screen-width, which were used to
specify the height and width of the screen in Emacs versions that did not support multiple frames,
are still usable. They apply to the selected frame. See Section 35.2 [Screen Size], page 648.

X-parse-geometry geom Function
The function x-parse-geometry converts a standard X windows geometry string to
an alist which you can use as part of the argument to x-create-frame.

478 GNU Emacs Lisp Reference Manual

The alist describes which parameters were specified in geom, and gives the values spec-
ified for them. Each element looks like (parameter . value). The possible parameter

values are left, top, width, and height.

(x-geometry "35x70+0-0")
= ((width . 35) (height . 70) (left . 0) (top . -1))

26.3 Deleting Frames

Frames remain potentially visible until you explicitly delete them. A deleted frame cannot
appear on the screen, but continues to exist as a Lisp object until there are no references to it.
There is no way to cancel the deletion of a frame aside from restoring a saved frame configuration
(see Section 26.10 [Frame Configurations|, page 482); this is similar to the way windows behave.

delete-frame &optional frame Command
This function deletes the frame frame. By default, frame is the selected frame.

frame-live-p frame Function
The function frame-live-p returns non-nil if the frame frame has not been deleted.

26.4 Finding All Frames

frame-list Function
The function frame-list returns a list of all the frames that have not been deleted.
It is analogous to buffer-1list for buffers. The list that you get is newly created, so

modifying the list doesn’t have any effect on the internals of Emacs.

visible-frame-list Function
This function returns a list of just the currently visible frames.

next-frame &optional frame minibuf Function
The function next-frame lets you cycle conveniently through all the frames from an
arbitrary starting point. It returns the “next” frame after frame in the cycle. If frame
is omitted or nil, it defaults to the selected frame.

Chapter 26: Frames 479

The second argument, minibuf, says which frames to consider:

nil Exclude minibuffer-only frames.

a window Consider only the frames using that particular window as their minibuffer.
anything else

Consider all frames.

26.5 Frames and Windows

All the non-minibuffer windows in a frame are arranged in a tree of subdivisions; the root of
this tree is available via the function frame-root-window. Each window is part of one and only
one frame; you can get the frame with window-frame.

frame-root-window frame Function
This returns the root window of frame frame.

window-frame window Function

This function returns the frame that window is on.

At any time, exactly one window on any frame is selected within the frame. The significance
of this designation is that selecting the frame also selects this window. You can get the frame’s
current selected window with frame-selected-window.

frame-selected-window frame Function

This function returns the window on frame which is selected within frame.

Conversely, selecting a window for Emacs with select-window also makes that window selected
within its frame. See Section 25.4 [Selecting Windows|, page 450.

26.6 Minibuffers and Frames

Normally, each frame has its own minibuffer window at the bottom, which is used whenever
that frame is selected. If the frame has a minibuffer, you can get it with minibuffer-window (see
Section 17.8 [Minibuffer Misc], page 286).

480 GNU Emacs Lisp Reference Manual

However, you can also create a frame with no minibuffer. Such a frame must use the minibuffer
window of some other frame. When you create the frame, you can specify explicitly the frame on
which to find the minibuffer to use. If you don’t, then the minibuffer is found in the frame which
is the value of the variable default-minibuffer-frame. Its value should be a frame which does
have a minibuffer.

26.7 Input Focus

At any time, one frame in Emacs is the selected frame. The selected window always resides on
the selected frame.

selected-frame Function
This function returns the selected frame.

The X server normally directs keyboard input to the X window that the mouse is in. Some
window managers use mouse clicks or keyboard events to shift the focus to various X windows,
overriding the normal behavior of the server.

Lisp programs can switch frames “temporarily” by calling the function select-frame. This
does not override the window manager; rather, it escapes from the window manager’s control until
that control is somehow reasserted.

select-frame frame Function
This function selects frame frame, temporarily disregarding the X Windows focus. The
selection of frame lasts until the next time the user does something to select a different
frame, or until the next time this function is called.

Emacs cooperates with the X server and the window managers by arranging to select frames
according to what the server and window manager ask for. It does so by generating a special
kind of input event, called a focus event. The command loop handles a focus event by calling
internal-select-frame. See Section 18.5.7 [Focus Events|, page 305.

internal-select-frame frame Function
This function selects frame frame, assuming that the X server focus already points to
frame.

Chapter 26: Frames 481

Focus events normally do their job by invoking this command. Don’t call it for any

other reason.

26.8 Visibility of Frames

A frame may be visible, invisible, or iconified. If it is visible, you can see its contents. If it
is iconified, the frame’s contents do not appear on the screen, but an icon does. If the frame is

invisible, it doesn’t show in the screen, not even as an icon.

make-frame-visible &optional frame Command
This function makes frame frame visible. If you omit frame, it makes the selected frame
visible.

make-frame-invisible &optional frame Command

This function makes frame frame invisible. If you omit frame, it makes the selected
frame invisible.

iconify-frame &optional frame Command
This function iconifies frame frame. If you omit frame, it iconifies the selected frame.

frame-visible-p frame Function
This returns the visibility status of frame frame. The value is t if frame is visible, nil
if it is invisible, and icon if it is iconified.

The visibility status of a frame is also available as a frame parameter. You can read or change
it as such. See Section 26.2.3 [X Frame Parameters|, page 475.

26.9 Raising and Lowering Frames

The X window system uses a desktop metaphor. Part of this metaphor is the idea that windows
are stacked in a notional third dimension perpendicular to the screen surface, and thus ordered from
“highest” to “lowest”. Where two windows overlap, the one higher up covers the one underneath.
Even a window at the bottom of the stack can be seen if no other window overlaps it.

482 GNU Emacs Lisp Reference Manual

A window’s place in this ordering is not fixed; in fact, users tend to change the order frequently.
Raising a window means moving it “up”, to the top of the stack. Lowering a window means moving
it to the bottom of the stack. This motion is in the notional third dimension only, and does not
change the position of the window on the screen.

You can raise and lower Emacs’s X windows with these functions:

raise-frame frame Function
This function raises frame frame.

lower-frame frame Function

This function lowers frame frame.

You can also specify auto-raise (raising automatically when a frame is selected) or auto-lower
(lowering automatically when it is deselected) for any frame using frame parameters. See Sec-
tion 26.2.3 [X Frame Parameters], page 475.

26.10 Frame Configurations

current-frame-configuration Function
This function returns a frame configuration list which describes the current arrangement
of frames, all their properties, and the window configuration of each one.

set-frame-configuration configuration Function
This function restores the state of frames described in configuration.

26.11 Mouse Tracking

Sometimes it is useful to track the mouse, which means, to display something to indicate where
the mouse is and move the indicator as the mouse moves. For efficient mouse tracking, you need a

way to wait until the mouse actually moves.

The convenient way to track the mouse is to ask for events to represent mouse motion. Then

you can wait for motion by waiting for an event. In addition, you can easily handle any other sorts

Chapter 26: Frames 483

of events that may occur. That is useful, because normally you don’t want to track the mouse

forever—only until some other event, such as the release of a button.

track-mouse body. .. Special Form
Execute body, meanwhile generating input events for mouse motion. The code in body
can read these events with read-event or read-key-sequence. See Section 18.5.6

[Motion Events], page 304, for the format of mouse motion events.

The value of track-mouse is that of the last form in body.

The usual purpose of tracking mouse motion is to indicate on the screen the consequences of
pushing or releasing a button at the current position.

26.12 Mouse Position

The new functions mouse-position and set-mouse-position give access to the current position
of the mouse.

mouse-position Function
This function returns a description of the position of the mouse. The value looks like
(frame x . y), where x and y are integers giving the position in pixels relative to the
top left corner of the inside of frame.

set-mouse-position frame x y Function
Thus function warps the mouse to position x, y in frame frame. The arguments x and
y are integers, giving the position in pixels relative to the top left corner of the inside
of frame.

Warping the mouse means changing the screen position of the mouse as if the user had
moved the physical mouse—thus simulating the effect of actual mouse motion.

26.13 Pop-Up Menus

484 GNU Emacs Lisp Reference Manual

X-popup-menu position menu Function
This function displays a pop-up menu and returns an indication of what selection the
user makes.

The argument position specifies where on the screen to put the menu. It can be either
a mouse button event (which says to put the menu where the user actuated the button)
or a list of this form:

((xoffset yoffset) window)

where xoffset and yoffset are positions measured in characters, counting from the top
left corner of window’s frame.

The argument menu says what to display in the menu. It can be a keymap or a list of
keymaps (see Section 19.6 [Menu Keymaps|, page 333). Alternatively, it can have the
following form:

(title panel pane2...)

where each pane is a list of form

(title (line item)...)

Each line should be a string, and each item should be the value to return if that line
is chosen.

26.14 X Selections

The X server records a set of selections which permit transfer of data between application
programs. The various selections are distinguished by selection types, represented in Emacs by

symbols. X clients including Emacs can read or set the selection for any given type.

x-set-selection type data Function
This function sets a “selection” in the X server. It takes two arguments: a selection
type type, and the value to assign to it, data. If data is nil, it means to clear out
the selection. Otherwise, data may be a string, a symbol, an integer (or a cons of two
integers or list of two integers), or a cons of two markers pointing to the same buffer.

Chapter 26: Frames 485

In the last case, the selection is considered to be the text between the markers. The
data may also be a vector of valid non-vector selection values.

Each possible type has its own selection value, which changes independently. The usual
values of type are PRIMARY and SECONDARY; these are symbols with upper-case names,
in accord with X Windows conventions. The default is PRIMARY.

x-get-selection type data-type Function
This function accesses selections set up by Emacs or by other X clients. It takes two
optional arguments, type and data-type. The default for type, the selection type, is
PRIMARY.

The data-type argument specifies the form of data conversion to use, to convert the raw
data obtained from another X client into Lisp data. Meaningful values include TEXT,
STRING, TARGETS, LENGTH, DELETE, FILE_NAME, CHARACTER_POSITION, LINE_NUMBER,
COLUMN_NUMBER, OWNER_0S, HOST_NAME, USER, CLASS, NAME, ATOM, and INTEGER. (These
are symbols with upper-case names in accord with X conventions.) The default for
data-type is STRING.

The X server also has a set of numbered cut buffers which can store text or other data being
moved between applications. Cut buffers are considered obsolete, but Emacs supports them for the
sake of X clients that still use them.

x-get-cut-buffer n Function

This function returns the contents of cut buffer number n.

x-set-cut-buffer string Function
This function stores string into the first cut buffer (cut buffer 0), moving the other
values down through the series of cut buffers, kill-ring-style.

26.15 X Server

This section describes how to access and change the overall status of the X server Emacs is
using.

486 GNU Emacs Lisp Reference Manual

26.15.1 X Connections

You can close the connection with the X server with the function x-close-current-connection,

and open a new one with x-open-connection (perhaps with a different server and display).

x-close-current-connection Function
This function closes the connection to the X server. It deletes all frames, making Emacs
effectively inaccessible to the user; therefore, a Lisp program that closes the connection

should open another one.

X-open-connection display &optional resource-string Function
This function opens a connection to an X server, for use of display display.

The optional argument resource-string is a string of resource names and values, in
the same format used in the ‘.Xresources’ file. The values you specify override the
resource values recorded in the X server itself. Here’s an example of what this string
might look like:

"xBorderWidth: 3\n*InternalBorder: 2\n"

x-color-display-p Function
This returns t if the connected X display has color, and nil otherwise.

x-color-defined-p color Function
This function reports whether a color name is meaningful and supported on the X
display Emacs is using. It returns t if the display supports that color; otherwise, nil.

Black-and-white displays support just two colors, "black" or "white". Color displays

support many other colors.

x-synchronize flag Function
The function x-synchronize enables or disables synchronous communication with the
X server. It enables synchronous communication if flag is non-nil, and disables it if
flag is nil.

In synchronous mode, Emacs waits for a response to each X protocol command before
doing anything else. This is useful for debugging Emacs, because protocol errors are

Chapter 26: Frames 487

reported right away, which helps you find the erroneous command. Synchronous mode

is not the default because it is much slower.

26.15.2 Resources

x-get-resource attribute &optional name class Function
The function x-get-resource retrieves a resource value from the X Windows defaults
database.

Resources are indexed by a combination of a key and a class. This function searches
using a key of the form ‘instance. attribute’, where instance is the name under which

Emacs was invoked, and uses ‘Emacs’ as the class.

The optional arguments component and subclass add to the key and the class, re-
spectively. You must specify both of them or neither. If you specify them, the key is

‘instance.component. attribute’, and the class is ‘Emacs.subclass’.

26.15.3 Rebinding X Server Keys

The X server allows each client to specify what sequence of characters each keyboard key should
generate, depending on the set of shift keys held down. Emacs has functions to redefine these
sequences in the X server. Redefinitions via x-rebind-key apply only to Emacs. Other clients
using the same X server are not affected.

x-rebind-key keysym modifiers newstring Function
This function redefines a keyboard key in the X server. keysym is a string which
conforms to the X keysym definitions found in ‘X11/keysymdef.h’, but without the
prefix XK_. modifiers is either nil, meaning no modifier keys, or a list of names of
modifier keys, again using the names from ‘X11/keysymdef.h’ but without the XK_
prefix.

The third argument, newstring, is the new definition of the key. It is the sequence of
characters that the key should produce as input.

For example,

488 GNU Emacs Lisp Reference Manual

(x-rebind-key "F1" nil "abc")

causes the F1 function key to generate the string "abc". Similarly,

(x-rebind-key "BackSpace"
(1ist "Shift" "Control_L" "c-s-BackSpace")

makes the BS key send the string "c-s-BackSpace" if either the shift key or the left-
hand control key is held down.

x-rebind-keys keysym strings Function
This function redefines the complete meaning of a single keyboard key, specifying the
behavior for each of the 16 shift masks independently.

The argument keysym specifies the key to rebind, as in x-rebind-key.

The argument strings is a list of 16 elements, one for each possible shift mask value; the
nth element says how to redefine the key keycode with shift mask value n. If element
n is a string, it is the new definition for shift mask n. If element n is nil, the definition
for shift mask n is unchanged.

26.15.4 Data about the X Server

This section describes functions and a variable that you can use to get information about the
capabilities and origin of the X server that Emacs is displaying its frames on.

x-display-screens Function
This function returns the number of screens associated with the current display.

X-server-version Function
This function returns the list of version numbers of the X server in use.

x-server-vendor Function

This function returns the vendor supporting the X server in use.

Chapter 26: Frames 489

x-display-pixel-height Function

This function returns the height of this X screen in pixels.

x-display-mm-height Function
This function returns the height of this X screen in millimeters.

x-display-pixel-width Function
This function returns the width of this X screen in pixels.

x-display-mm-width Function
This function returns the width of this X screen in millimeters.

x-display-backing-store Function
This function returns the backing store capability of this screen. Values can be the
symbols always, when-mapped, or not-useful.

x-display-save-under Function

This function returns non-nil if this X screen supports the SaveUnder feature.

x-display-planes Function
This function returns the number of planes this display supports.

x-display-visual-class Function
This function returns the visual class for this X screen. The value is one of the symbols
static-gray, gray-scale, static-color, pseudo-color, true-color, and direct-
color.

x-display-color-p Function
This function returns t if the X screen in use is a color screen.

x-display-color-cells Function
This function returns the number of color cells this X screen supports.

x-no-window-manager Variable
This variable’s value is is t if no X window manager is in use.

490 GNU Emacs Lisp Reference Manual

Chapter 27: Positions 491

27 Positions

A position is the index of a character in the text of buffer. More precisely, a position identifies
the place between two characters (or before the first character, or after the last character), so we
can speak of the character before or after a given position. However, the character after a position

is often said to be “at” that position.

Positions are usually represented as integers starting from 1, but can also be represented as
markers—special objects which relocate automatically when text is inserted or deleted so they stay
with the surrounding characters. See Chapter 28 [Markers], page 507.

27.1 Point

Point is a special buffer position used by many editing commands, including the self-inserting
typed characters and text insertion functions. Other commands move point through the text to
allow editing and insertion at different places.

Like other positions, point designates a place between two characters (or before the first char-
acter, or after the last character), rather than a particular character. Many terminals display the
cursor over the character that immediately follows point; on such terminals, point is actually before

the character on which the cursor sits.

The value of point is a number between 1 and the buffer size plus 1. If narrowing is in effect (see
Section 27.4 [Narrowing], page 503), then point is constrained to fall within the accessible portion
of the buffer (possibly at one end of it).

Each buffer has its own value of point, which is independent of the value of point in other buffers.
Each window also has a value of point, which is independent of the value of point in other windows
on the same buffer. This is why point can have different values in various windows that display the
same buffer. When a buffer appears in only one window, the buffer’s point and the window’s point
normally have the same value, so the distinction is rarely important. See Section 25.9 [Window
Point], page 459, for more details.

point Function
This function returns the position of point in the current buffer, as an integer.

492 GNU Emacs Lisp Reference Manual

(point)
= 175

point-min Function
This function returns the minimum accessible value of point in the current buffer. This
is 1, unless narrowing is in effect, in which case it is the position of the start of the
region that you narrowed to. (See Section 27.4 [Narrowing], page 503.)

point-max Function
This function returns the maximum accessible value of point in the current buffer. This
is (1+ (buffer-size)), unless narrowing is in effect, in which case it is the position of
the end of the region that you narrowed to. (See Section 27.4 [Narrowing], page 503).

buffer-end flag Function
This function returns (point-min) if flag is less than 1, (point-max) otherwise. The
argument flag must be a number.

buffer-size Function
This function returns the total number of characters in the current buffer. In the
absence of any narrowing (see Section 27.4 [Narrowing], page 503), point-max returns

a value one larger than this.

(buffer-size)
= 35

(point-max)
= 36

buffer-saved-size Variable
The value of this buffer-local variable is the former length of the current buffer, as of
the last time it was read in, saved or auto-saved.

Chapter 27: Positions 493

27.2 Motion

Motion functions change the value of point, either relative to the current value of point, relative
to the beginning or end of the buffer, or relative to the edges of the selected window. See Section 27.1
[Point|, page 491.

27.2.1 Motion by Characters

These functions move point based on a count of characters. goto-char is a fundamental prim-

itive because it is the way to move point to a specified position.

goto-char position Command
This function sets point in the current buffer to the value position. If position is less
than 1, then point is set to the beginning of the buffer. If it is greater than the length
of the buffer, then point is set to the end of the buffer.

If narrowing is in effect, then the position is still measured from the beginning of the
buffer, but point cannot be moved outside of the accessible portion. Therefore, if
position is too small, point is set to the beginning of the accessible portion of the text;
if position is too large, point is set to the end.

When this function is called interactively, position is the numeric prefix argument, if

provided; otherwise it is read from the minibuffer.

goto-char returns position.

forward-char &optional count Command
This function moves point forward, towards the end of the buffer, count characters (or
backward, towards the beginning of the buffer, if count is negative). If the function
attempts to move point past the beginning or end of the buffer (or the limits of the
accessible portion, when narrowing is in effect), an error is signaled with error code

beginning-of-buffer or end-of-buffer.

In an interactive call, count is the numeric prefix argument.

494 GNU Emacs Lisp Reference Manual

backward-char &optional count Command
This function moves point backward, towards the beginning of the buffer, count char-
acters (or forward, towards the end of the buffer, if count is negative). If the function
attempts to move point past the beginning or end of the buffer (or the limits of the
accessible portion, when narrowing is in effect), an error is signaled with error code

beginning-of-buffer or end-of-buffer.

In an interactive call, count is the numeric prefix argument.

27.2.2 Motion by Words

These functions for parsing words use the syntax table to decide whether a given character is
part of a word. See Chapter 31 [Syntax Tables], page 583.

forward-word count Command
This function moves point forward count words (or backward if count is negative).
Normally it returns t. If this motion encounters the beginning or end of the buffer, or
the limits of the accessible portion when narrowing is in effect, point stops there and

the value is nil.

In an interactive call, count is set to the numeric prefix argument.

backward-word count Command
This function just like forward-word, except that it moves backward until encountering

the front of a word, rather than forward.
In an interactive call, count is set to the numeric prefix argument.

This function is rarely used in programs, as it is more efficient to call forward-word

with negative argument.

words-include-escapes Variable
This variable affects the behavior of forward-word and everything that uses it. If it is
non-nil, then characters in the “escape” and “character quote” syntax classes count
as part of words. Otherwise, they do not.

Chapter 27: Positions 495

27.2.3 Motion to an End of the Buffer

To move point to the beginning of the buffer, write:

(goto-char (point-min))

Likewise, to move to the end of the buffer, use:

(goto-char (point-max))

Here are two commands which users use to do these things. They are documented here to warn
you not to use them in Lisp programs, because they set the mark and display messages in the echo

area.

beginning-of-buffer &optional n Command
This function moves point to the beginning of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position. If n is
non-nil, then it puts point n tenths of the way from the beginning of the buffer.

In an interactive call, n is the numeric prefix argument, if provided; otherwise n defaults
to nil.

Don’t use this function in Lisp programs!

end-of-buffer &optional n Command
This function moves point to the end of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position. If n is
non-nil, then it puts point n tenths of the way from the end.

In an interactive call, n is the numeric prefix argument, if provided; otherwise n defaults
to nil.

Don’t use this function in Lisp programs!

496 GNU Emacs Lisp Reference Manual

27.2.4 Motion by Text Lines

Text lines are portions of the buffer delimited by newline characters, which are regarded as part
of the previous line. The first text line begins at the beginning of the buffer, and the last text
line ends at the end of the buffer whether or not the last character is a newline. The division of
the buffer into text lines is not affected by the width of the window, or by how tabs and control

characters are displayed.

goto-line line Command
This function moves point to the front of the lineth line, counting from line 1 at
beginning of buffer. If line is less than 1, then point is set to the beginning of the
buffer. If line is greater than the number of lines in the buffer, then point is set to the
end of the last line of the buffer.

If narrowing is in effect, then line still counts from the beginning of the buffer, but
point cannot go outside the accessible portion. So point is set at the beginning or
end of the accessible portion of the text if the line number specifies a position that is
inaccessible.

The return value of goto-1line is the difference between line and the line number of the
line to which point actually was able move (before taking account of any narrowing).
Thus, the value is positive if the scan encounters the end of the buffer.

In an interactive call, line is the numeric prefix argument if one has been provided.
Otherwise line is read in the minibuffer.

beginning-of-line &optional count Command
This function moves point to the beginning of the current line. With an argument
count not nil or 1, it moves forward count—1 lines and then to the beginning of the
line.

If this function reaches the end of the buffer (or of the accessible portion, if narrowing
is in effect), it positions point at the beginning of the last line. No error is signaled.

end-of-line &optional count Command
This function moves point to the end of the current line. With an argument count not
nil or 1, it moves forward count—1 lines and then to the end of the line.

Chapter 27: Positions 497

If this function reaches the end of the buffer (or of the accessible portion, if narrowing

is in effect), it positions point at the end of the last line. No error is signaled.

forward-line &optional count Command
This function moves point forward count lines, to the beginning of the line. If count is
negative, it moves point —count lines backward, to the beginning of the line.

If the beginning or end of the buffer (or of the accessible portion) is encountered before
that many lines are found, then point stops at the beginning or end. No error is
signaled.

forward-line returns the difference between count and the number of lines actually
moved. If you attempt to move down five lines from the beginning of a buffer that has
only three lines, point will positioned at the end of the last line, and the value will be
2.

In an interactive call, count is the numeric prefix argument.

count-lines start end Function
This function returns the number of lines between the positions start and end in the
current buffer. If start and end are equal, then it returns 0. Otherwise it returns at
least 1, even if start and end are on the same line. This is because the text between

them, considered in isolation, must contain at least one line unless it is empty.

Here is an example of using count-lines:

(defun current-line ()
"Return the vertical position of point
in the selected window. Top line is O.
Counts each text line only once, even if it wraps."
(+ (count-lines (window-start) (point))
(if (= (current-column) 0) 1 0)
-1))

Also see the functions bolp and eolp in Section 29.1 [Near Point|, page 517. These functions
do not move point, but test whether it is already at the beginning or end of a line.

498 GNU Emacs Lisp Reference Manual

27.2.5 Motion by Screen Lines

The line functions in the previous section count text lines, delimited only by newline characters.
By contrast, these functions count screen lines, which are defined by the way the text appears on
the screen. A text line is a single screen line if it is short enough to fit the width of the selected

window, but otherwise it may occupy several screen lines.

In some cases, text lines are truncated on the screen rather than continued onto additional screen
lines. Then vertical-motion moves point just like forward-line. See Section 35.3 [Truncation],
page 649.

Because the width of a given string depends on the flags which control the appearance of certain
characters, vertical-motion will behave differently on a given piece of text found in different
buffers. It will even act differently in different windows showing the same buffer, because the width
may differ and so may the truncation flag. See Section 35.12 [Usual Display]|, page 662.

vertical-motion count Function
This function moves point to the start of the screen line count screen lines down from

the screen line containing point. If count is negative, it moves up instead.

This function returns the number of lines moved. The value may be less in absolute
value than count if the beginning or end of the buffer was reached.

move-to-window-line count Command
This function moves point with respect to the text currently displayed in the selected
window. Point is moved to the beginning of the screen line count screen lines from the
top of the window. If count is negative, point moves either to the beginning of the line
—count lines from the bottom or else to the last line of the buffer if the buffer ends

above the specified screen position.

If count is nil, then point moves to the beginning of the line in the middle of the
window. If the absolute value of count is greater than the size of the window, then
point moves to the place which would appear on that screen line if the window were
tall enough. This will probably cause the next redisplay to scroll to bring that location
onto the screen.

In an interactive call, count is the numeric prefix argument.

Chapter 27: Positions 499

The